Giải bài 6 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1
Cho \(\left| {\overrightarrow a + \overrightarrow b } \right| = 0\). So sánh độ dài, phương và hướng của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \).
Hướng dẫn giải chi tiết Bài 6
Phương pháp giải
Cho hai vectơ \(\overrightarrow a\) và \(\overrightarrow b\). Từ một điểm A tùy ý, lấy hai điểm B, C sao cho \(\overrightarrow {AB} = \overrightarrow a \), \(\overrightarrow {BC} = \overrightarrow b \). Khi đó \(\overrightarrow {AC} \) được gọi là tổng của hai vecto \(\overrightarrow a\), \(\overrightarrow b\) được kí hiệu là \(\overrightarrow a + \overrightarrow b \).
Vậy \(\overrightarrow a + \overrightarrow b = \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
Lời giải chi tiết
\(\left| {\overrightarrow a + \overrightarrow b } \right| = 0 \Leftrightarrow \overrightarrow a + \overrightarrow b = \overrightarrow 0 \Leftrightarrow \overrightarrow a = - \overrightarrow b \)
\(\overrightarrow a = - \overrightarrow b \) suy ra hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) là hai vecto đối nhau nên chúng cùng phương, ngược hướng và có độ dài bằng nhau.
-- Mod Toán 10 HỌC247
-
Cho tam giác \(OAB\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(OA\) và \(OB\). Hãy tìm các số \(m, n\) sao cho: \(\overrightarrow {MN} = m\overrightarrow {OA} + n\overrightarrow {OB} \)
bởi Ngoc Son 04/09/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 4 trang 102 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 10 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 11 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 12 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 10 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 103 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 103 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 103 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST