YOMEDIA
NONE

Giải bài 2 trang 59 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 2 trang 59 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai:

a) \(y = (1 - 3m){x^2} + 3\)

b) \(y = (4m - 1){(x - 7)^2}\)

c) \(y = 2({x^2} + 1) + 11 - m\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 2

Phương pháp giải

Hai số bậc hai (biến x) có dạng \(y = f(x) = a{x^2} + bx + c\) với \(a,b,c \in \mathbb{R}\)và \(a \ne 0\)

Điều kiện: là đa thức bậc hai với hệ số thực, hệ số a khác 0.

Lời giải chi tiết

a) Để hàm số \(y = (1 - 3m){x^2} + 3\) là hàm số bậc hai thì: \(1 - 3m \ne 0\) tức là \(m \ne \frac{1}{3}\)

Vây \(m \ne \frac{1}{3}\) thì hàm số đã cho là hàm số bậc hai.

b) Để hàm số \(y = (m - 2){x^3} + (m - 1){x^2} + 5\) là hàm số bậc hai thì:

\(\left\{ \begin{array}{l}m - 2 = 0\\m - 1 \ne 0\end{array} \right.\) tức là \(m = 2.\)

Khi đó \(y = (2 - 1){x^2} + 5 = {x^2} + 5\)

Vậy \(m = 2\) thì hàm số đã cho là hàm số bậc hai \(y = {x^2} + 5\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 2 trang 59 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON