YOMEDIA
NONE

Giải bài 2 trang 43 SGK Toán 10 Cánh diều tập 1 - CD

Giải bài 2 trang 43 SGK Toán 10 Cánh diều tập 1

Xác định parabol \(y = a{x^2} + bx + 4\) trong mỗi trường hợp sau:

a) Đi qua điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\)

b) Có đỉnh là \(I\left( { - 3; - 5} \right)\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 2

Phương pháp giải

a) Thay tọa độ điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\) vào phương trình đã cho.

b) Thay tọa độ điểm I vào pt đã cho.

Hướng dẫn giải

a) Thay tọa độ điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\) ta được:

\(\begin{array}{l}\left\{ \begin{array}{l}a{.1^2} + b.1 + 4 = 12\\a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4 = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a + b = 8\\9a - 3b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 6\end{array} \right.\end{array}\)

Vậy parabol là \(y = 2{x^2} + 6x + 4\)

b) Hoành độ đỉnh của parabol là \(\frac{{ - b}}{{2a}}\)

Nên ta có: \(\frac{{ - b}}{{2a}} =  - 3 \Leftrightarrow b = 6a\)     (1)

Thay tọa độ điểm I vào ta được:

\(\begin{array}{l} - 5 = a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4\\ \Leftrightarrow 9a - 3b =  - 9\\ \Leftrightarrow 3a - b =  - 3\left( 2 \right)\end{array}\)

Từ (1) và (2) ta được hệ

\(\begin{array}{l}\left\{ \begin{array}{l}b = 6a\\3a - b =  - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\3a - 6a =  - 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\a = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6\\a = 1\end{array} \right.\end{array}\)

Vậy parabol là \(y = {x^2} + 6x + 4\).

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 2 trang 43 SGK Toán 10 Cánh diều tập 1 - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON