YOMEDIA
NONE

Tìm các số nguyên dương (x,n) thoả mãn phương trình x^3+3367=2^n

Tìm các số nguyên dương (x,n) thoả mãn phương trình sau:

\(x^3+3367=2^n\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Đặc điểm đặc biệt của một số lập phương là chia $7$ dư $0,1$ hoặc $6$ nên ta sẽ sử dụng mod 7 trong bài này.

    Ta thấy: \(2^n=x^3+3367\equiv x^3\pmod 7\)

    \(x^3\equiv 0,1,6\pmod 7\Rightarrow 2^n\equiv 0,1,6\pmod 7\)

    Ta thấy \(2^3\equiv 1\pmod 7\) nên xét các TH sau:

    +) Nếu \(n=3k\Rightarrow 2^n=2^{3k}\equiv 1\pmod 7\)

    +) Nếu \(n=3k+1\Rightarrow 2^n=2^{3k+1}=2^{3k}.2\equiv 2\pmod 7\)

    +) Nếu \(n=3k+2\Rightarrow 2^n=2^{3k+2}=2^{3k}.4\equiv 4\pmod 7\)

    Từ các TH trên suy ra \(n=3k\) là th duy nhất có thể xảy ra.

    Khi đó:

    \(x^3+3367=2^{3k}=(2^k)^3\)

    \(\Leftrightarrow 3367=(2^k)^3-x^3\)

    \(\Leftrightarrow 3367=(2^k-x)(2^{2k}+x.2^k+x^2)\)

    Đây là dạng pt tích đơn giản . Thử các TH ta suy ra \(x=9, k=4\rightarrow n=12\)

    Vậy \((x,n)=(9,12)\)

      bởi Ngọc Sustar 15/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON