YOMEDIA
NONE

Chứng minh AJ. BI ≤ AB^2/4

cho tam giác đều ABC . trên BC, CA,AB lấy 3 điểm bất kì I,J,K sao cho K khác A,B và \(\widehat{\text{IJ}K}\)= 60. chứng minh AJ. BI\(\le\)\(\frac{AB^2}{4}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • mạo phép sửa đề:\(\widehat{IKJ}=60^o\)

    A B C I J K

    vì tam giác ABC đều nên\(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

    ta có:\(\widehat{AKJ}+\widehat{IKJ}+\widehat{IKB}=180^o\)(K\(\in\)AB)

    \(\Rightarrow\widehat{AKJ}+\widehat{IKB}=180^o-\widehat{IKJ}=120^o\)(1)

    xét \(\Delta BIK\):\(\widehat{B}+\widehat{IKB}+\widehat{BIK}=180^o\)(tổng 3 góc trong tam giác)

    \(\widehat{B}=60^o\Rightarrow\widehat{BIK}+\widehat{IKB}=120^o\)(2)

    từ (1)và (2):\(\widehat{AKJ}=\widehat{BIK}\)

    xét \(\Delta AKJ\)\(\Delta BIK\)có:\(\widehat{A}=\widehat{B}=60^o\left(cmt\right)\)

    \(\widehat{AKJ}=\widehat{BIK}\left(cmt\right)\Rightarrow\Delta AKJ\)~\(\Delta BIK\left(g.g\right)\)

    \(\rightarrow\frac{AJ}{BK}=\frac{AK}{IB}\Leftrightarrow AJ.IB=BK.AK\)

    áp dụng BĐT \(\left(a+b\right)^2\ge4ab\)(cách cm:chuyển vế tương đương or dùng cauchy)\(\Rightarrow ab\le\frac{\left(a+b\right)^2}{4}\)

    \(BK.AK\le\frac{\left(BK+AK\right)^2}{4}\Leftrightarrow AJ.IB\le\frac{AB^2}{4}\)

    dấu = xảy ra khi BK=AK hay K là trung điểm của AB

      bởi Dương Ngọc Hà 22/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON