YOMEDIA
NONE

Cho ba số thực dương x, y, z thỏa điều kiện x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức \(P = \dfrac{x}{{{y^2} + 1}} + \dfrac{y}{{{z^2} + 1}} + \dfrac{z}{{{x^2} + 1}}\)

Cho ba số thực dương x, y, z thỏa điều kiện x + y + z = 3.  Tìm giá trị nhỏ nhất của biểu thức \(P = \dfrac{x}{{{y^2} + 1}} + \dfrac{y}{{{z^2} + 1}} + \dfrac{z}{{{x^2} + 1}}\) 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Áp dụng bất đẳng thức Cô-si cho 2 số \({y^2},1\) ta có \({y^2} + 1 \ge 2\sqrt {{y^2} + 1} \) \( \Leftrightarrow {y^2} + 1 \ge 2y\)

    Ta có: \(\dfrac{x}{{{y^2} + 1}} = \dfrac{{x\left( {{y^2} + 1} \right) - x{y^2}}}{{{y^2} + 1}}\) \( = x - \dfrac{{x{y^2}}}{{{y^2} + 1}} \ge x - \dfrac{{x{y^2}}}{{2y}} = x - \dfrac{{xy}}{2}\) 

    Tương tự ta có:

    \(\dfrac{y}{{{z^2} + 1}} = \dfrac{{y\left( {{z^2} + 1} \right) - y{z^2}}}{{{z^2} + 1}}\) \( = y - \dfrac{{y{z^2}}}{{{z^2} + 1}} \ge y - \dfrac{{y{z^2}}}{{2z}} = y - \dfrac{{yz}}{2}\)

    \(\dfrac{z}{{{x^2} + 1}} = \dfrac{{z\left( {{x^2} + 1} \right) - z{x^2}}}{{{x^2} + 1}}\) \( = z - \dfrac{{z{x^2}}}{{{x^2} + 1}} \ge z - \dfrac{{z{x^2}}}{{2x}} = z - \dfrac{{zx}}{2}\)

    Cộng theo từng vế ta được:

    \(\dfrac{x}{{{y^2} + 1}} + \dfrac{y}{{{z^2} + 1}} + \dfrac{z}{{{x^2} + 1}}\) \( \ge x + y + z - \dfrac{{xy + yz + xz}}{2}\)  (1)

    Mặt khác, theo BĐT Cô-si ta có:

    \(\begin{array}{l}{x^2} + {y^2} \ge 2xy\\{y^2} + {z^2} \ge 2yz\\{x^2} + {z^2} \ge 2xz\end{array}\)

    Suy ra \(2\left( {{x^2} + {y^2} + {z^2}} \right) \ge 2\left( {xy + yz + xz} \right)\)

    \( \Leftrightarrow {x^2} + {y^2} + {z^2} \ge xy + yz + zx\)

    \( \Leftrightarrow {x^2} + {y^2} + {z^2} + 2\left( {xy + yz + xz} \right)\) \( \ge 3\left( {xy + yz + xz} \right)\)

    \( \Leftrightarrow {\left( {x + y + z} \right)^2} \ge 3\left( {xy + yz + xz} \right)\)

    \( \Leftrightarrow {3^2} \ge 3\left( {xy + yz + xz} \right)\) \( \Leftrightarrow xy + yz + xz \le 3\) (2)

    Từ (1) và (2) ta có:  \(\dfrac{x}{{{y^2} + 1}} + \dfrac{y}{{{z^2} + 1}} + \dfrac{z}{{{x^2} + 1}}\)\( \ge 3 - \dfrac{3}{2} = \dfrac{3}{2}\)

    Hay \(P \ge \dfrac{3}{2}\)

    Dấu “=” xảy ra khi \(x = y = z = 1.\)

    Vậy giá trị nhỏ nhất của \(P\) là \(\dfrac{3}{2}\) khi \(x = y = z = 1.\)

      bởi Anh Tuyet 10/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON