YOMEDIA
NONE

Tính giá trị biểu thức A=x^2+5x/2-3/2 khi x=2

Cho biểu thức A = \(x^2+\dfrac{5}{2}x-\dfrac{3}{2}\)

Tìm Giá trị của A khi x = 2

Tìm x để A=0

Tìm giá trị nhỏ nhất của A

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • a, Tại \(x=2\) thì giá trị của biểu thức A là:

    \(2^2+\dfrac{5}{2}.2-\dfrac{3}{2}=\dfrac{15}{2}\)

    b, Để \(A=0\) thì

    \(x^2+\dfrac{5}{2}x-\dfrac{3}{2}=0\\ \Leftrightarrow x^2+3x-\dfrac{1}{2}x-\dfrac{3}{2}=0\\ \Leftrightarrow x\left(x+3\right)-\dfrac{1}{2}\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-\dfrac{1}{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

    c, Ta có:

    \(x^2+\dfrac{5}{2}x-\dfrac{3}{2}\\ =x^2+\dfrac{5}{4}x+\dfrac{5}{4}x+\dfrac{25}{16}-\dfrac{49}{16}\\ =x\left(x+\dfrac{5}{4}\right)+\dfrac{5}{4}\left(x+\dfrac{5}{4}\right)-\dfrac{49}{16}\\ =\left(x+\dfrac{5}{4}\right)^2-\dfrac{49}{16}\ge-\dfrac{49}{16}\)

    Dấu "=" sảy ra khi và chỉ khi \(x=-\dfrac{5}{4}\)

      bởi Nguyen Huong Quynh 02/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON