Tìm x, y, z thuộc N* thỏa (x+y.căn 2017)(/(y+z.căn 2017) thuộc Q
1, Tìm x; y; z \(\in N\)* thỏa mãn: \(\dfrac{x+y.\sqrt{2017}}{y+z.\sqrt{2017}}\in Q\) và:
a) \(x^2+y^2+z^2\) là một số nguyên tố
b) \(x^2-2y^2+z^2=36\)
2, Cho tam giác ABC có 3 góc nhọn, \(D\in AB;E\in AC\) thỏa mãn: BC = BD + CI
Tìm vị trí của D và E để DI nhỏ nhất
Trả lời (1)
-
Lời giải:
Để \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\in\mathbb{Q}\Rightarrow \exists a,b\in\mathbb{N}^*, (a,b)=1\) sao cho :
\(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}=\frac{a}{b}\Leftrightarrow bx+by\sqrt{2017}=ay+az\sqrt{2017}\)
\(\Leftrightarrow (bx-ay)=\sqrt{2017}(az-by)\)
Vì \(a,b,x,y\in\mathbb{N}^*; \sqrt{2017}\not\in\mathbb{Q}\rightarrow \) để đẳng thức trên xảy ra thì:
\(bx-ay=az-by=0\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{a}{b}=\frac{x}{y}\\ \frac{a}{b}=\frac{y}{z}\end{matrix}\right.\Rightarrow \frac{x}{y}=\frac{y}{z}\)
\(\Rightarrow y^2=xz\)
a) Gọi d là ước chung lớn nhất của x và z. Khi đó đặt:
\(\left\{\begin{matrix} x=x_1d\\ z=z_1d\end{matrix}\right.(x_1,z_1\in\mathbb{N}^*; (x_1,z_1)=1)\)
\(\Rightarrow x^2+y^2+z^2=x_1^2d^2+d^2x_1z_1+z_1^2d^2\)
\(=d^2(x_1^2+x_1z_1+z_1^2)\)
Vì \(x_1,z_1\in\mathbb{N}^*\Rightarrow x_1^2+x_1z_1+z_1^2>1\)
Do đó để \(x^2+y^2+z^2\in\mathbb{P}\Rightarrow d=1\)
Ta thấy \(y^2=xz; (x,z)=1\Rightarrow \exists m,n\in\mathbb{Z}\) sao cho:
\(\left\{\begin{matrix} x=m^2\\ z=n^2\end{matrix}\right.\Rightarrow y=mn\)
Khi đó: \(x^2+y^2+z^2=m^4+m^2n^2+n^4=(m^2+n^2)^2-m^2n^2\)
\(=(m^2+n^2-mn)(m^2+n^2+mn)\)
Để tích trên là số nguyên tố thì buộc một trong hai thừa số phải bằng 1
Dễ thấy \(m^2+n^2-mn< m^2+n^2+mn\Rightarrow m^2+n^2-mn=1\)
\(\Leftrightarrow (m-n)^2+mn=1\Leftrightarrow mn=1-(m-n)^2\leq 1\)
Mà \(mn=y\geq 1\)
Do đó \(mn=1\) hay \(y=1\)
Mặt khác \(mn=1; m,n\in\mathbb{Z}\Rightarrow (m,n)=(1,1); (-1;-1)\)
Cả hai đều thu được \(x=z=1\)
Vậy \((x,y,z)=(1,1,1)\)
b)
Vì \(xz=y^2\Rightarrow x^2-2y^2+z^2=36\)
\(\Leftrightarrow x^2-2xz+z^2=36\)
\(\Leftrightarrow (x-z)^2=36\Leftrightarrow x-z=\pm 6\)
TH1: \(x-z=6\Rightarrow x=z+6\)
Khi đó: \(y^2=xz=z(6+z)=z^2+6z\)
\(\Leftrightarrow y^2+9=(z+3)^2\)
\(\Leftrightarrow (z+3-y)(z+3+y)=9\)
Do \(z+3+y>0; z+3+y> z+3-y\) nên:\((z+3-y,z+3+y)=(1;9)\)
Từ đây ta thu được: \(z=2;y=4\rightarrow x=8\)
Ta có bộ \((x,y,z)=(8;4;2)\)
TH2: \(x-z=-6\). Tương tự như trên ta thu được \((x,y,z)=(2;4;8)\)
bởi Trương Hiểu Dĩnh 27/02/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời