YOMEDIA
NONE

Tìm GTLN của biểu thức A=2018-|x+1|-|x+2|

a) Cho f(x)=ax^2+bx+c. Biết 7a+b=0. Hỏi tích f(10) và f(-3) có thể là số âm hay ko?

b)Tìm giá trị lớn nhất của A=2018-|x+1|-|x+2|

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    a) Ta có:

    \(f(x)=ax^2+bx+c\Rightarrow \left\{\begin{matrix} f(10)=100a+10b+c\\ f(-3)=9a-3b+c\end{matrix}\right.\)

    \(\Rightarrow f(10)-f(-3)=91a+13b=13(7a+b)=0\)

    \(\Rightarrow f(10)=f(-3)\)

    \(\Rightarrow f(10)f(-3)=f^2(10)\geq 0\)

    Tức là tích $f(10)f(-3)$ không thể là số âm.

    b)

    Có: \(A=2018-|x+1|-|x+2|=2018-(|x+1|+|x+2|)\)

    Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) thì:

    \(|x+1|+|x+2|=|x+1|+|-x-2|\geq |x+1-x-2|=1\)

    \(\Rightarrow A=2018-(|x+1|+|x+2|)\leq 2018-1=2017\)

    Vậy \(A_{\max}=2017\)

    Dấu bằng xảy ra khi

    \((x+1)(-x-2)\geq 0\Leftrightarrow (x+1)(x+2)\leq 0\Leftrightarrow -2\leq x\leq -1\)

      bởi Trần Chris 10/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON