Đa thức bậc 4
Mn giúp em câu này với ạ. Suy nghĩ hoài mà ko ra
Cho \(P(x)\) là một đa thức bậc 4 sao cho \(P(1) = P( - 1)\) và \(P(2) = P( - 2).\) Chứng tỏ rằng \(P(x) = P( - x)\) với mọi \(x \in \mathbb{Q}.\)
Trả lời (1)
-
Bài này cũng dễ thôi mà bạn
\(P(x)\) là đa thức bậc 4 nên \(P(x)\) có dạng thu gọn là:
\(P(x) = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + {a_4}{x^4}\)
Từ các điều kiện: \(P(1) = P( - 1)\) và \(P(2) = P( - 2),\) ta suy ra:
\({a_1} + {a_3} = - {a_1} - {a_3}\) (1)
\(2{a_1} + 8{a_3} = - 2{a_1} - 8{a_3}\) (2)
Từ (1) và (2) suy ra: \({a_1} = {a_3} = 0.\)
Vậy \(P(x) = {a_0} + {a_2}{x^2} + {a_4}{x^4} = {{\rm{a}}_0} + {a_2}{( - x)^2} + {a_4}{( - x)^4} = P( - x)\) với mọi \(x \in \mathbb{Q}.\)bởi thu hằng 31/10/2017Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời