Có tồn tại số dương a, b thỏa 1/a-1/b=1/(a-b)?
Trả lời được câu này mới thật sự giỏi:
Có tồn tại số dương a,b thỏa mãn\(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)
Trả lời (1)
-
Ta có: 1/a - 1/b = 1/(a-b)
=> (b-a) / ab = 1/ (a-b)
=> (b-a).(a-b) = ab.1
=> -(a-b)2 = ab
<=> -(a2 - 2ab + b2) = ab
<=> -a2 + 2ab - b2 = ab
=> -a2 - b2 = ab - 2ab = -ab
<=> a2 + b2 = ab
Mà a,b dương: a2 + b2 \(\ge\) 4ab (BĐT côsi)
Nên không tồn tại số dương a,b thỏa mãn 1/a - 1/b = 1/(a-b)
bởi Quách Minh Quân 27/02/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời