Chứng minh (x+y+z)^2=x^2+y^2+z^2 biết a+b+c=a^2+b^2+c^2=1
Cho a+b+c=a^2+b^2+c^2=1và a,b,c tương ứng tỉ lệ thuận với x,y,z chứng minh rằng (x+y+z)^2=x^2+y^2+z^2
Trả lời (1)
-
Giải:
Vì \(a,b,c\) tỉ lệ thuân với \(x,y,z\) nên: \(\dfrac{x}{a}=\dfrac{y}{y}=\dfrac{z}{c}.\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}=x+y+z.\)
Lại có: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\left(\dfrac{x}{a}\right)^2=\left(\dfrac{y}{b}\right)^2=\left(\dfrac{z}{c}\right)^2\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2_{\left(1\right)}.\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{1}=x^2+y^2+z^2_{\left(2\right)}.\)
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\left(đpcm\right).\)
bởi võ thị bích duyên 16/11/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời