YOMEDIA
NONE

Chứng minh tổng MA+MB+MC lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của ΔABC

Cho điểm M nằm trong ΔABC. Chứng minh rằng tổng MA+MB+MC lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của ΔABC.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • A B C M D

    Vẽ BM cắt AC tại D. Vì M nằm trong tam giác ABC nên D nằm giữa A và C, ta có AC = AD + DC

    Tam giác ABD có DB < AB + AD, =>

    MB + MD < AB + AD (1)

    Tam giác MDC có MC < DC + MD

    Công (1) và (2) theo từng vế, ta được:

    MB + MC + MD < AB + AD + DC + MD

    => MB + MC < AB + ( AD + DC )

    => MB + MC < AB + AC

    Tương tự => MA + MB < AC + BC và MA + MC < AB + BC

    => MB + MC + MA + MB + MA + MC < AB + AC + AC + BC + AB + BC

    => 2(MA + MB +MC)<2(AB + AC + AB)

    => MA + MB + MC < AB + AC + AB (3)

    Xét các tam giác MAB, MAC, MBC ta lần lượt có:

    MA + MB > AB; MA + MC > AC; MB + MC > BC

    => MA + MB + MA + MC + MB + MC > AB + AC + BC

    => 2( MA + MB + MC) > AB + AC + BC

    => \(MA+MB+MC>\dfrac{AB+AC+BC}{2}\left(4\right)\)

    Từ (3) và (4)

    \(\Rightarrow\dfrac{AB+AC+BC}{2}< MA+MB+MC< AB+AC+BC\)

      bởi thảo nhi 25/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON