Chứng minh tam giác IBM cân biết tam giác ABC cân tại A có BP vuông góc AC
cho \(\Delta\) ABC cân tại A . Gọi M là trung điểm của BC
a. Cm : \(\Delta\) ABM = \(\Delta\) ACM
b. Từ M kẻ MH \(\perp\) AB ( H \(\in\) AB ) và MK \(\perp\) AC ( K \(\in\) AC )
Cm : BH = CK
c. Từ B kẻ BP \(\perp\) AC ( P \(\in\) AC ) biết BP cắt MH tại I
Cm : \(\Delta\) IBM cân
Trả lời (1)
-
a) xét △ABM và △ ACM có
AB=AC ( △ABC cân tại A)
\(\widehat{B}=\widehat{C}\)( △ABC cân tại A)
BM=MC (gt)
=> △ABM = △ ACM (c.g.c)(đpcm)
b) xét △HBM và △ HCM có
\(\widehat{H}=\widehat{K}\left(=90^0\right)\)
BM=MC
\(\widehat{B}=\widehat{C}\) ( △ABC cân tại A)
=> △HBM = △ HCM (ch-gn)
=> HB=HC (2 cạnh tương ứng ) (đpcm)
c) +vì △HBM = △ HCM ( theo b)
=> \(\widehat{HMB}=\widehat{KMC}\)(2 góc tương ứng )
VÌ + BP ⊥ AC (gt)
+ MK ⊥ AC (gt)
=> BP // MK (qh từ vuông góc đến // )
=> \(\widehat{BIM}=\widehat{KIM}\) (slt)
ta có
\(\widehat{BIM}+\widehat{HMB}+\widehat{IBM}=180^0\)(đl tổng 3 góc trong △)
\(\widehat{HMB}+\widehat{IMK}+\widehat{KMC}=180^0\)(kề bù )
MÀ \(\widehat{HMB}\) chung
\(\widehat{BIM}=\widehat{IMK}\left(cmt\right)\)
=> \(\widehat{IBM}=\widehat{KMC}\)
MÀ \(\widehat{KMC}=\widehat{IMB}\) (cmt)
=> \(\widehat{IBM}=\widehat{IMB}\)
=> △ IBM cân tại I (đpcm)
bởi Hạnh Quang 09/04/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời