Chứng minh tam giác BOD=COE biết tam giác ABC có AB=AC, lấy điểm D trên cạnh AB
Cho \(\Delta ABC\) có AB = AC . Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE.
a ) chứng minh BE = CD
b ) Gọi O là giao điểm của BE và CD . Chứng minh \(\Delta BOD=\Delta COE\)
p / s : sử dụng tam giác cân để chứng minh
Trả lời (1)
-
a) Vì \(\Delta\)ABC có AB = AC nên \(\Delta\)ABC cân tại A
=> \(\widehat{ABC}\) = \(\widehat{ACB}\) (góc đáy)
hay \(\widehat{DBC}\) = \(\widehat{ECB}\)
Ta có: AD + DB = AB
AE + EC = AC
mà AB = AC; AD = AE nên DB = EC
Xét \(\Delta\)BDC và \(\Delta\)CEB có:
BD = CE (chứng minh trên)
\(\widehat{DBC}\) = \(\widehat{ECB}\) (c/m trên)
BC chung
=> \(\Delta\)BDC = \(\Delta\)CEB (c.g.c)
=> CD = BE (2 cạnh tương ứng)
b) Do \(\Delta\)BDC = \(\Delta\)CEB (câu a)
=> \(\widehat{BDC}\) = \(\widehat{CEB}\) (2 góc tương ứng)
hay \(\widehat{BDO}\) = \(\widehat{CEO}\)
và \(\widehat{DCB}\) = \(\widehat{EBC}\) (2 góc tương ứng)
Lại có: \(\widehat{DBO}\) + \(\widehat{EBC}\) = \(\widehat{ABC}\)\(\widehat{ECO}\) + \(\widehat{DCB}\) = \(\widehat{ACB}\)
mà \(\widehat{EBC}\) = \(\widehat{DCB}\); \(\widehat{ABC}\) = \(\widehat{ACB}\)
=> \(\widehat{DBO}\) = \(\widehat{ECO}\)
Xét \(\Delta\)BOD và \(\Delta\)COE có:
\(\widehat{DBO}\) = \(\widehat{ECO}\) (c/m trên)
BD = CE (c/m câu a)
\(\widehat{BDO}\) = \(\widehat{CEO}\) (c/m trên)
=> \(\Delta\)BOD = \(\Delta\)COE (g.c.g)
bởi Phạm Quỳnh Trang 17/04/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời