Chứng minh tam giác AED=AFD và AD là trung trực của EF biết D là trung điểm BC
Cho tam giác cân ABC (AB=AC). Gọi D là trung điểm của BC, từ D hạ DE, DF vuông góc với AB, AC theo thứ tự (E thuộc AB, F thuộc AC).
a) Cm: tam giác AED=AFD và AD là trung trực của EF.
b) Trên tia đối của tia DE lấy điểm K sao cho DK=DE. Cm: Tam giác EKC vuông.
c) So sánh BF và EK.
Trả lời (1)
-
Xét tam giác vuông AED và tam giác vuông AFD, có:
\(\left\{{}\begin{matrix}\widehat{EAD}=\widehat{FAD}\\AD.chung\end{matrix}\right.\)(ABC cân; AD là trung điểm (1) )
\(\Rightarrow\Delta AED=\Delta AFD\left(ch-gn\right)\) (2)
Từ (1) \(\Rightarrow\) AD là đường cao đồng thời là trung điểm
\(\Rightarrow AD\) là trung trực của EF.
b) Xét tam giác CKD và tam giác BED, có:
\(\left\{{}\begin{matrix}CD=DB\left(gt\right)\\\widehat{CDK}=\widehat{BDE}\left(đđ\right)\\KD=KE\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta CKD=\Delta BED\left(c.g.c\right)\)
\(\Rightarrow\widehat{K}=\widehat{E}\) (2 cạnh t/ứng)
Mà \(\widehat{E}=90^o\)
\(\Rightarrow\widehat{K}=90^o\)
Mà \(\widehat{K}\in\Delta EKC\Rightarrow\Delta EKC\) vuông tại K (ĐPCM)
c) Ta có: \(CF=EB\left(\Delta EBD=\Delta KCD=\Delta FCD\right)\)
Xét tam giác CFB và tam giác BEC, có:
\(\left\{{}\begin{matrix}\widehat{FCB}=\widehat{EBC}\left(gt\right)\\CF=EB\left(cmt\right)\\CB.Chung\end{matrix}\right.\)
\(\Rightarrow\Delta CFB=\Delta BEC\left(c.g.c\right)\)
\(\Rightarrow FB=EC\) (2 cạnh t.ứng) (*)
Ta có: \(\Delta CKE\) vuông tại K
\(\Rightarrow CE>KE\) (CE là cạnh huyền) (**)
Từ (*) và (**) \(\Rightarrow FB>KE\) (ĐPCM)
bởi Trầm Mặc 28/02/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời