Chứng minh tam giác ABC=DBC biết tam giác ABC vuông tại A có AH vuông góc BC
Cho \(\Delta ABC\) vuông tại A kẻ \(AH\perp BC\) tại H. Trên tia đối của tia HA lấy điểm D sao cho DH = HA
a) Cho AB=8cm, BC = 10cm. Tính AC
b) Cm \(\Delta ABH=\Delta DBH\) và \(\Delta ABD\) cân
c) Cm \(\Delta ABC=\Delta DBC\)
d) Đường trung trực của BD và đường trung trực của CD cắt nhau tại M Cm M là trung điểm của BC
Trả lời (1)
-
a, Tính AC:
Lưu ý: Muốn dùng định lí Pitago thì phải chỉ ra một góc trong tam giác đó bằng 90o.
Ta có: \(\widehat{A}=90^o\) (ΔABC vuông tại A)
Áp dụng định lí Pitago vào ΔABC:
Ta có: AB2 + AC2 = BC2
=> AC2 = BC2 - AB2
=> AC2 = 102 - 82
=> AC2 = 36
=> AC2 = \(\sqrt{36}\left(cm\right)\)
=> AC = 6 (cm)
b)
- \(\Delta ABH=\Delta DBH\):
Xét ΔABH và ΔDBH có:
+ BH là cạnh chung.
+ \(\widehat{H_1}=\widehat{H_2}=90^o\) (do kẻ AH \(\perp\) BC)
+ DH = HA (gt)
=> ΔABH = ΔDBH (c-g-c)
- \(\Delta ABD\) cân:
Ta có: ΔABH = ΔDBH (vừa cm)
=> AB = BD (2 cạnh tương ứng)
=> ΔABD cân tại B.
c, ΔABC = ΔDBC:
Ta có: ΔABH = ΔDBH (câu b)
=> \(\widehat{B_1}=\widehat{B_2}\) (2 góc tương ứng)
=> AB = BD (2 cạnh tương ứng)
Xét ΔABC và ΔDBC có:
+ AB = BD (cmt)
+ \(\widehat{B_1}=\widehat{B_2}\) (cmt)
+ BC là cạnh chung.
=> ΔABC = ΔDBC (c-g-c)
bởi Đoàn Thị Bích Trâm 08/05/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời