YOMEDIA
NONE

Chứng minh nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân

CMR: Nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ( Hình tự vẽ )

    Gọi tam giác đó là ΔABC , đường trung tuyến BD và CE

    Gọi giao điểm của BD và CE là G

    => G là trọng tâm ΔABC

    => \(BG=\dfrac{2}{3}BD;CG=\dfrac{2}{3}CE;GD=\dfrac{1}{3}BD;GE=\dfrac{1}{3}CE\)

    mà BD = CE ( gt )

    => BG = CG ; GD = GE

    +) XétΔBEG và ΔCEG có :

    GE = GD ( cmt )

    \(\widehat{EGB}=\widehat{DGC}\) ( 2 góc đối đỉnh )

    GB = GC (cmt )

    => ΔBEG = ΔCDG ( c.g.c )

    => BE = CD ( 2 cạnh tương ứng )

    +) Ta có :

    \(CD=\dfrac{1}{2}AC\)( BD là đường trung tuyến ứng với cạnh AC )

    \(BE=\dfrac{1}{2}AB\) ( CE là đường trung tuyến ứng với cạnh AB )

    mà BE = CD ( cmt )

    \(\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}AC\\ \Rightarrow AB=AC\)

    \(\Rightarrow\)ΔABC cân ở A

      bởi NGuyễn Thanh Thảo 16/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON