Chứng minh n^2+4n+3 chia hết cho 8
với n lẻ thì
a) \(n^2+4n+3⋮8\)
b)(\(n^3+3n^2-n-3\))\(⋮\)48
Trả lời (1)
-
Lời giải:
a) Ta có:
\(n^2+4n+3=n^2+n+3(n+1)=n(n+1)+3(n+1)=(n+1)(n+3)\)
Vì $n$ lẻ nên đặt \(n=2k+1(k\in\mathbb{N})\)
Khi đó \(n^2+4n+3=(n+1)(n+3)=(2k+1+1)(2k+1+3)=4(k+1)(k+2)\)
Vì $k+1,k+2$ là hai số tự nhiên liên tiếp nên \((k+1)(k+2)\vdots 2\)
\(\Rightarrow 4(k+1)(k+2)\vdots 8\Leftrightarrow n^2+4n+3\vdots 8\) (đpcm)
b)
Phân tích \(n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)\)
Đặt \(n=2k+1\Rightarrow (n^2-1)(n+3)=(n-1)(n+1)(n+3)=2k(2k+2)(2k+4)\)
\(=8k(k+1)(k+2)\)
Vì \(k,k+1,k+2\) là ba số tự nhiên liên tiếp nên \(k(k+1)(k+2)\) chia hết cho $2$ và $3$
\(\Rightarrow k(k+1)(k+2)\vdots 6\)
\(\Rightarrow 8k(k+1)(k+2)\vdots 48\)
hay \(n^3+3n^2-n-3\vdots 48\) (đpcm)
bởi Nguyễn Đặng Hồng Anh Hồng Anh 10/01/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời