YOMEDIA
NONE

Chứng minh n^2+4n+3 chia hết cho 8

với n lẻ thì

a) \(n^2+4n+3⋮8\)

b)(\(n^3+3n^2-n-3\))\(⋮\)48

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    a) Ta có:

    \(n^2+4n+3=n^2+n+3(n+1)=n(n+1)+3(n+1)=(n+1)(n+3)\)

    Vì $n$ lẻ nên đặt \(n=2k+1(k\in\mathbb{N})\)

    Khi đó \(n^2+4n+3=(n+1)(n+3)=(2k+1+1)(2k+1+3)=4(k+1)(k+2)\)

    Vì $k+1,k+2$ là hai số tự nhiên liên tiếp nên \((k+1)(k+2)\vdots 2\)

    \(\Rightarrow 4(k+1)(k+2)\vdots 8\Leftrightarrow n^2+4n+3\vdots 8\) (đpcm)

    b)

    Phân tích \(n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)\)

    Đặt \(n=2k+1\Rightarrow (n^2-1)(n+3)=(n-1)(n+1)(n+3)=2k(2k+2)(2k+4)\)

    \(=8k(k+1)(k+2)\)

    \(k,k+1,k+2\) là ba số tự nhiên liên tiếp nên \(k(k+1)(k+2)\) chia hết cho $2$ và $3$

    \(\Rightarrow k(k+1)(k+2)\vdots 6\)

    \(\Rightarrow 8k(k+1)(k+2)\vdots 48\)

    hay \(n^3+3n^2-n-3\vdots 48\) (đpcm)

    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON