Chứng minh MN//BC biết tam giác ABC vuông tại A có BM=CN
Đề bài như sau:
Cho tam giác ABC vuông tại A. Trên các cạnh AB và AC lần lượt lấy các điểm M, N sao cho BM = CN
a) Chứng minh: BN = CM.
b) MN//BC.
c) Gọi I là giao điểm của BN và CM. Chứng minh hai tam giác IBC và tam giác IMN là tam giác cân. Gọi H là trung điểm BC. Chứng minh 3 điểm A, I, H thẳng hàng.
Giúp mình với nha. Cảm ơn nhiều nhé.
Trả lời (1)
-
Chữa lại đề: \(\Delta ABC\) vuông cân tại A.
Bài làm:
a, Vì \(\left\{{}\begin{matrix}AB=AC\\BM=CN\end{matrix}\right.\)\(\Rightarrow AB-BM=AC-CN\)\(\Rightarrow AM=AN\)
\(\Delta ACM\) và \(\Delta ABN\) có: \(\left\{{}\begin{matrix}AC=AB\left(gt\right)\\\widehat{A}chung\\AN=AM\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ACM=\Delta ABN\left(c.g.c\right)\)
\(\Rightarrow CM=BN\)(2 cạnh tương ứng)
b, Vì \(\Delta ABC\) vuông cân tại A nên\(\widehat{ABC}=\widehat{ACB}\) (*)
\(\Delta ABC\) có: \(\widehat{ABC}+\widehat{ACB}=90^0\)
Từ (*) suy ra: \(\widehat{ABC}=\widehat{ACB}=45^0\) (1)
Vì \(\Delta AMN\) vuông cân tại A nên \(\widehat{AMN}=\widehat{ANM}\) (**)
\(\Delta AMN\) có: \(\widehat{AMN}+\widehat{ANM}=90^0\)
Từ (**) suy ra: \(\widehat{AMN}=\widehat{ANM}=45^0\) (2)
Từ (1) và (2) ta suy ra: \(\widehat{AMN}=\widehat{ABC}=45^0\)\(\Rightarrow MN//BC\) (vì có cặp góc đồng vị bằng nhau)
c,+ \(\Delta ABN=\Delta ACN\left(đcm\right)\) nên\(\widehat{B_1}=\widehat{C_1}\) (2 góc t/ứng)
Từ câu b ta có: \(\widehat{ABC}=\widehat{ACB}\) nên: \(\widehat{ABC}-\widehat{B_1}=\widehat{ACB}-\widehat{C_1}\)
\(\Rightarrow\widehat{B_2}=\widehat{C_2}\)
\(\Rightarrow\Delta IBC\) là tam giác cân
+\(\Delta AMN\) cân tại A(đcm) nên \(\widehat{M_1}=\widehat{N_1}\)
Lại có:\(\Delta ABN=\Delta ACN\left(đcm\right)\)
\(\Rightarrow\widehat{AMC}=\widehat{ANB}\)
\(\Rightarrow\widehat{AMC}-\widehat{M_1}=\widehat{ANB}-\widehat{N_1}\)
\(\Rightarrow\widehat{M_2}=\widehat{N_2}\)
\(\Rightarrow\Delta IMN\) là tam giác cân
+ Từ câu b\(\Delta ABH\) và \(\Delta ACH\) có: \(\left\{{}\begin{matrix}AB=AC\left(đcm\right)\\AHchung\\BH=HC\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.c.c\right)\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)(2 góc t/ứng)
\(\Rightarrow AH\) là tia phân giác của \(BAC\)(1)
+Do \(\Delta IMN\) cân (đcm) nên \(IM=IN\)
\(\Delta AIM\) và \(\Delta AIN\) có: \(\left\{{}\begin{matrix}AM=AN\left(gt\right)\\AIchung\\IM=IN\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AIM=\Delta AIN\left(c.c.c\right)\)
\(\Rightarrow\widehat{MAI}=\widehat{NAI}\) (2 góc t/ứng)
\(\Rightarrow AI\) là tia phân giác của \(\widehat{BAC}\) (2)Từ (1) và (2) ta suy ra: \(A,I,H\) thẳng hàng
P/s: + đcm là đã chứng minh
+ cmt là chứng minh trên
Good luck!
bởi võ thị bích duyên 22/02/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời