YOMEDIA
NONE

Chứng minh DF song song với BE biết tam giác ABC vuông ở A, phân giác CD

Cho tam giác ABC vuông ở A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. CMR:

a) góc CEB=góc ADC; góc EBH = góc ACD

b) BE vuông góc với BC

c) DF song song với BE

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • 1) a,△BED có H là trung điểm của DE và BH ┴ DE
    => △BED cân ở B
    => ∠BED = ∠BDE
    ∠BDE = ∠ADC (đối đỉnh)
    => ∠BED = ∠ADC
    △BED cân ở B => BH là phân giác của ∠EBD
    => ∠EHB = ∠DBH
    mà ∠DBH = 90⁰ - ∠BFA = 90⁰ - ∠HFC = ∠ACD
    => ∠EBH = ∠ACD
    b, ∠EBH = ∠ACD = ∠DCB (vì CH là phân giác của ∠ACB)
    = 90⁰ - ∠CBH
    => ∠EHB + ∠CBH = 90⁰
    => BE ┴ BC
    c, △FBC có CH ┴ BF ; BA ┴ FC ; CH ⋂ BA = {D}
    => D là trực tâm của △FBC
    => FD ┴ BC
    BE ┴ BC
    => FD//BE

      bởi Vo Phan Ky 12/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON