Chứng minh đa thức P(x)=x^8-x^7+x^5-x^3+1 luôn dương với mọi giá trị x thuộc Q
Cho đa thức P(x) = x8 - x7 + x5 - x3 + 1
Chứng minh rằng P(x) luôn dương với mọi giá trị x thuộc Q
Trả lời (1)
-
Ta chia ra xét 3 phần :
phần 1:( x^8 - x^7) luôn là số dương vì bất kì số nào mũ 8 sẽ là số dương và x^7 sẽ > x^8 nên 1 số dương trừ đi số bé hơn nó sẽ là số dương.
phần 2:(x^5 - x^3) luôn < (x^8 - x^7)
phần 3:( 1 là số dương)
Từ 3 phần trên : ta có ( 1 số dương + 1 số bé hơn nó + 1)
=> = 1 số dương + 1
sẽ = 1 số dương
nên đa thức P(x) luôn là 1 số dương với mọi giá trị x thuộc Q.
ko bt đúng ko nhé. tui hiểu sao lm z đó!
bởi Hiền Đinh 08/05/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời