Chứng minh có ít nhất 2 trong 2015 số bằng nhau biết 1/a1+1/a2+...+1/a2015=1008
Giả sử có 2015 số \(Z^+\) a1, a2, ... , a2015 thỏa mãn:
\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2015}}=1008\)
CMR: Cs ít nhất 2 trong 2015 số \(Z^+\) đã cho bằng nhau.
Trả lời (1)
-
Giả sử trong 2015 số nguyên dương a1, a2, ... , a2015 thỏa mãn :
\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2015}}=1008\)và không có số nào bằng nhau.Ta có :
\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2015}}\le\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2015}\)
\(\Rightarrow\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2015}}< \dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2}=1+1007=1008\)
(mâu thuẫn)
⇒Điều giả sử sai ⇒ có ít nhất 2 trong 2015 số nguyên dương đã cho
bằng nhau.
bởi Võ Văn Thiên 16/04/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời