YOMEDIA
NONE

Chứng minh CE // BF và CE = BF biết tam giác ABC có BE và CF vuông góc với Ax

Cho tam giác ABC ( AB \(\ne\) AC ), tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax ( E \(\in\) Ax, F \(\in\) Ax ). Chứng minh:

a) BE // CF, BE = CF và ME = MF;

b) CE // BF và CE = BF.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Kí hiệu tam giác là t/g nhé

    a) Có: BE _|_ Ax (gt)

    CF _|_ Ax (gt)

    Suy ra BE // CF (1)

    Xét t/g EMB vuông tại E và t/g FMC vuông tại F có:

    BM = CM (gt)

    EMB = FMC ( đối đỉnh)

    Do đó, t/g EMB = t/g FMC ( cạnh huyền và góc nhọn kề)

    => BE = CF (2 cạnh tương ứng) (2)

    ME = MF (2 cạnh tương ứng) (3)

    (1); (2) và (3) là đpcm

    b) Xét t/g EMC và t/g FMB có:

    EM = MF (câu a)

    EMC = FMB ( đối đỉnh)

    CM = BM (gt)

    Do đó, t/g EMC = t/g FMB (c.g.c)

    => CE = BF (2 cạnh tương ứng) (4)

    ECM = FBM (2 góc tương ứng)

    Mà ECM và FBM là 2 góc so le trong

    Nên EC // BF (5)

    (4) và (5) là đpcm

     

     

      bởi Đinh Công Thành 13/02/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON