Chứng minh CB là tia phân giác góc ACM biết tam giác ABC vuông tại A có AB < AC
Cho tam giác ABc vuông tại A,AB<AC,đường cao AH.Trên đoạn HC lấy điểm D sao cho HD=HB.Từ C kẻ CE vuông góc với AD (E thuộc AD),CE cắt AH tại M
a)Chứng minh tam giác ABD cân
b)Chứng minh góc HAD= góc ACH,CB là tia phân giác góc ACM
c)Trên CA lấy F sao cho CF=CE.Chứng minh M,D,F thẳng hàng
Trả lời (1)
-
a) Xét tam giác ABH và tam giác ADH có:
HB=HD (gt)
\(\widehat{BHA}=\widehat{DHA}\left(=90\right)\)
HA chung
=> Tam giác ABH=tam giác ADH (c-g-c)
=> AB=AD
=> tam giác ABD cân tại A
b) Ta có: tam giác ABH=tam giác ADH (câu a)
=> \(\widehat{HAB}=\widehat{HAD}\) (2 góc tương ứng) (1)
Ta lại có: \(\widehat{HAB}=\widehat{BAC}-\widehat{HAC}\) = \(90-\widehat{HAC}\)
\(\widehat{ACH}=\widehat{CHA}-\widehat{HAC}=90-\widehat{HAC}\)
=> \(\widehat{HAB}=\widehat{ACH}\) (2)
Từ (1) và (2) => \(\widehat{HAD}=\widehat{ACH}\) (*) (đpcm)
Xét tam giác AEM và tam giác CHM có:
\(\widehat{M}\) chung
\(\widehat{AEM}=\widehat{CHM}=90\)
=> tam giác AEM = tam giác CHM
=> \(\widehat{HAD}=\widehat{MCH}\) ( 2 góc tương ứng) (**)
Từ (*) và (**) => \(\widehat{ACH}=\widehat{MCH}\)
=> CB là tia phân giác của \(\widehat{ACM}\) (đpcm)
Còn câu d mình chưa biết
Nếu mà sai thì bạn thông cảm nha
bởi Hương Xuân 09/04/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời