Chứng minh BH//CK, BH=CK biết tam giác ABC có M là trung điểm của BC, BH vuông AM
Cho tam giác ABC, M là trung điểm BC. Kẻ BH, CK vuông góc với AM
a) CMR : BH // CK, BH = CK
b) CMR : BK // CH ; BK= CH
c) Gọi E là trung điểm của BK , F là trung điểm của CH. CMR : E, M, F thẳng hàng
d) CMR : tam giác AEF cân
Trả lời (1)
-
a) Xét \(\Delta BHM;\Delta CKM\) có :
\(\widehat{BHM}=\widehat{CKM}\left(=90^o-gt\right)\)
\(BM=MC\left(gt\right)\)
\(\widehat{HMB}=\widehat{KMC}\) (đối đỉnh)
=> \(\Delta BHM=\Delta CKM\) (cạnh huyền - góc nhọn)
=> \(\widehat{HBM}=\widehat{KCM}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> \(\text{BH // KC}\left(đpcm\right)\)
Và từ \(\Delta BHM=\Delta CKM\) (cmt)
=> \(BH=CK\) (2 cạnh tương ứng)
b) Xét \(\Delta HMC;\Delta KMB\) có :
\(BM=MC\left(gt\right)\)
\(\widehat{HMC}=\widehat{KMB}\) (đối đỉnh)
\(HM=MK\) (do \(\Delta BHM=\Delta CKM\) -cmt)
=> \(\Delta HMC;\Delta KMB\)
=> \(\Delta HMC=\Delta KMB\) (c.g.c)
=> \(\widehat{HCM}=\widehat{KBM}\) (2 góc tương ứng)
Mà : 2 góc này ở vị trí so le trong
=> \(\text{BK // CH }\left(đpcm\right)\)
Có : \(\Delta HMC=\Delta KMB\) (cmt)
=> \(BK=CH\) (2 cạnh tương ứng)
c) Ta có : \(\left\{{}\begin{matrix}HF=FC\\BE=EK\end{matrix}\right.\) (gt)
Mà : \(BK=HC\left(cmt\right)\)
=> \(HF=FC=BE=EK\)
Xét \(\Delta BEM;\Delta FCM\) có :
\(BM=MC\left(gt\right)\)
\(\widehat{MBE}=\widehat{MCF}\left(slt\right)\)
\(BE=FC\left(cmt\right)\)
=> \(\Delta BEM=\Delta FCM\left(c.g.c\right)\)
=> \(EM=FM\)(2 cạnh tương ứng)
=> M Là trung điểm của EF
Do đó : E, ,M, F thẳng hàng
bởi Đức Hùng Hà 07/04/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời