YOMEDIA
NONE

Chứng minh BE=CD biết tam giác ABC cân ở A, BE là tia phân giác góc ABC

Bài 1 : cho tam giác ABC cân ở A . Vẽ BE là tia phân giác góc ABC , CD là tia phân giác góc ACB

a) Chứng minh BE = CD

b) I là giao điểm BE và CD . Chứng minh tam giác BIC là tam giác cân

c, Chứng minh DE // BC

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • A B C I D E 1 2 1 2 1 1

    a) Vì tam giác ABC cân tại A => góc B = góc C ( tính chất tam giác cân ) mà BE và CD lần lượt là tia phân giác của góc B và góc C => góc B1 = góc B2 = góc C1 = góc C2 hay góc B1 = góc C1 ; góc B2 = góc C2

    Xét tam giác AEB và tam giác ADC , có :

    góc A : chung

    góc B1 = góc C1 ( chứng minh trên )

    AB = AC ( tam giác ABC cân tại A )

    => tam giác AEB = tam giác ADC ( g-c-g )

    Vậy tam giác AEB = tam giác ADC ( g-c-g )

    b) Vì góc góc B2 = góc C2 ( chứng minh trên ) => tam giác BIC cân tại I

    Vậy tam giác BIC là tam giác cân

    c) Vì tam giác AEB = tam giác ADC ( chứng minh trên ) => AE = AD ( hai cạnh tương ứng ) => tam giác ADE cân tại A => góc D1 = góc E1 ( tính chất tam giác cân )

    Xét tam giác ADE cân tại A : góc DAE + góc D1 + góc E1 = 180o ( định lí tổng ba góc trong một tam giác )

    => góc D1 = 180o - góc A / 2 ( 1 )

    Xét tam giác ABC cân tại A => góc B = góc C , có :

    góc A + góc B + goc C = 180o( định lí tổng ba góc trong một tam giác )

    => góc B = 180o - góc A / 2 ( 2)

    Từ ( 1 ) và ( 2 ) => góc D1 = góc B mà hai góc ở vị trí đồng vị nên DE // BC

    Vậy DE // BC

      bởi hoàng vũ ngọc tường 22/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON