Chứng minh bất đẳng thức tam giác mở rộng
CM ''bất đẳng thức tam giác mở rộng '':Với 3 điểm A,B,C bất kì ,ta có :AB+AC lớn hơn hoặc bằng BC
Trả lời (2)
-
Trên tia đối của tia AB lấy D sao cho AD = AC
Do tia CA nằm giữa hai tia CB và CD nên
\(\widehat{BCD}>\widehat{ACD}\) (1)
Mặt khác, theo cách dựng, tam giác ACD cân tại A nên
\(\widehat{ACD}=\widehat{ADC}=\widehat{BDC}\) (2)
Từ (1) và (2) suy ra :
\(\widehat{BCD}>\widehat{BDC}\)
\(\Rightarrow BD>BC\) (quan hệ góc và cạnh đối diện trong \(\Delta BCD\))
\(\Rightarrow AB+AC>BC\)
Chỉ khi \(A,B,C\) thẳng hàng
\(\Rightarrow AB+AC=BC\)
bởi phạm hương 18/04/2019Like (0) Báo cáo sai phạm -
ta có 3 điểm A, B, C bất kỳ.
Trường hợp 1:A, B, C không thẳng hàng
A, B, C tạo ra 1 tam giác
=> AB+AC>BC (1)
Trường hợp 2:A, B, C thẳng hàng
=>AB+AC=BC(vì A nằm trên đoạn thẳng BC) (2)
Từ (1) và (2) suy ra: AB+AC>=BC(Đpcm)
bởi Vũ Hoàng Minh 23/07/2021Like (0) Báo cáo sai phạm
Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời