Chứng minh bất đẳng thức MA + MB < CA + CB biết M là 1 điểm nằm trong tam giác
Cho tam giác ABC và M là 1 điểm nằm trong tam giác .Gọi I là giao điểm của đường thẳng BM và cạnh AC.
a) So sánh MA với MI + IA , từ đó c/m MA + MB < IB + IA.
b) So sánh IB với IC + CB ,từ đó c/m IB + IA < CA +CB.
c) C/m bất đẳng thức MA + MB < CA + CB.
HELP ME!
Trả lời (1)
-
(Bạn tự vẽ hình nhé)
a) Xét \(\Delta IAM\) có:
\(IA+MI>MA\) (Bất đẳng thức \(\Delta\))
\(\Rightarrow IA+MI+MB>MA+MB\)
Mà \(MI+MB=IB\left(M\in BI\right)\)
\(\Rightarrow IA+IB>MA+MB\) (Đpcm) (1)
b) Xét \(\Delta CIB\) có:
\(IC+CB>IB\) (Bất đẳng thức \(\Delta\))
\(\Rightarrow IC+CB+IA>IB+IA\)
Mà \(IC+IA=CA\left(I\in AC\right)\)
\(\Rightarrow CA+CB>IA+IB\) (Đpcm) (2)
c) Từ (1),(2) \(\Rightarrow MA+MB< IA+IB< CA+CB\)
\(\Rightarrow MA+MB< CA+CB\left(đpcm\right)\)
bởi Lê Võ Thanh Loan 13/12/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời