Chứng minh AM=BC biết tam giác ABC cân tại A có A=20 độ, tam giác DBC đều
Cho tam giác ABC cân tại A có A = 20o, vẽ tam giác đều DBC ( D nằm trong tam giác ABC ). Tia phân giác của góc ABD cắt AC tại M. Chứng minh:
a) Tia AD là phân giác của góc BAC
b) AM = BC
Trả lời (1)
-
a) Chứng minh \(\Delta\)ADB = \(\Delta\)ADC
\(\Rightarrow\) DAB = DAC
Do đó: DAB = 20o : 2 = 10o
b)\(\Delta\)ABC cân tại A, mà A = 20o (gt)nên \(\Delta\)ABC = (180o - 20o) : 2 = 80o
\(\Delta\)ABC đều nên DBC = 60o
Tia BD nằm giữa hai tia BA và BC \(\Rightarrow\) \(\Delta\)ABD = 80o - 60o = 20o. Tia BM là phân giác của góc ABD nên \(\Delta\)ABM = 10o
Xét tam giác ABM và BAD có:
AB cạnh chung: \(\Delta\) BAM = \(\Delta\)ABD = 20o
\(\Delta\)ABM = \(\Delta\) DAB = 10o
Vậy: \(\Delta\)ABM = \(\Delta\)BAD (g.c.g) suy ra AM = BD, mà BD = BC (gt) nên AM = BC
bởi bùi thị thanh thúy 25/04/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời