AMBIENT

Chứng minh 3^(n+2)-2^(n+4)+3^n+2^n chia hết cho 30 với mọi n thuộc số tự nhiên

bởi Nguyễn Vân 08/05/2019

Chứng minh rằng: \(3^{n+2}-2^{n+4}+3^n+2^n\) chia hết cho 30 với mọi n thuộc số tự nhiên

RANDOM

Câu trả lời (1)

  • Ta co

    \(3^{n+2}-2^{n+4}+3^n+2^n=3^n.3^2-2^n.2^4+3^n+2^n=3^n.\left(3^2+1\right)-2^n.\left(2^4-1\right)=3^n.10-2^n.15=5.\left(3^n.2-2^n.3\right)=5.2.3.\left(3^{n-1}-2^{n-1}\right)=30.\left(3^{n-1}-2^{n-1}\right)\)

    Vì 30 chia hêt cho 30 nên 30.(\(3^{n-1}-2^{n-1}\)) chia hêt cho 30

    Hay \(3^{n+2}-2^{n+4}+3^n+2^n\) chia hêt cho 30

    bởi nguyễn hoàng lâm oanh 08/05/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Gửi câu trả lời Hủy

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

AMBIENT
?>