Chứng minh 3 điểm M, A, N thẳng hàng biết M là trung điểm của BE, N là trung điểm của CD

bởi Lê Minh Trí 08/05/2019

Cho tam giác ABC có góc B và góc C là hai góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD = AB, Trên tia đối của tia AC lấy điểm E sao cho AE = AC.

a) Chứng minh rằng BE = CD

b) Gọi M là trung điểm của BE, N là trung điểm của CD. Chứng minh rằng M,A,N thẳng hàng

c) Ax là tia bất kì nằm giữa hai tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Chứng minh rằng BH+CK < hoặc= BC

d) Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

Câu trả lời (1)

  • E D C B H K x M N A

    a) Xét \(\Delta BEA\)\(\Delta DCA\) có:

    AE = AC (gt)

    \(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)

    AB = AD (gt)

    \(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)

    \(\Rightarrow BE=CD\) (2 cạnh t/ư)

    b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)

    \(DN=\frac{1}{2}CD\) (N là tđ)

    mà BE = CD \(\Rightarrow BM=DN\)

    \(\Delta BEA=\Delta DCA\) (câu a)

    \(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)

    hay \(\widehat{MBA}=\widehat{NDA}\)

    Xét \(\Delta ABM\)\(\Delta ADN\) có:

    AB = AD (gt)

    \(\widehat{MBA}=\widehat{NDA}\) (c/m trên)

    BM = DN (c/m trên)

    \(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)

    \(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)

    \(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)

    \(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)

    \(\Rightarrow M,A,N\) thẳng hàng.

    bởi Nguyen Huong Quynh 08/05/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Gửi câu trả lời Hủy

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan