YOMEDIA
NONE

Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC biết AB=BC=a căn 3

Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B, AB=BC=a\(\sqrt{3}\) , SAB=SCB=90\(^o\) và khoảng cách từ A đến (SBC) bằng a\(\sqrt{2}\) . Tính diện tích mặt cầu ngoại tiếp hình chóp SABC theo a

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Gọi $H$ là chân đường cao kẻ từ $S$ xuống mặt phẳng $(ABC)$

    Ta có \(\left\{\begin{matrix} SH\perp AB\\ SA\perp AB\end{matrix}\right.\Rightarrow AB\perp (SHA)\rightarrow AB\perp HA\)

    Tương tự \(BC\perp HC\). Kết hợp với \(ABC\) vuông cân tại $B$ suy ra \(ABCH\) là hình vuông

    \(AH\parallel (SBC)\Rightarrow d(A,(SBC))=d(H,(SBC))\)

    Kẻ \(HT\perp SC\). Có \(\left\{\begin{matrix} SH\perp BC\\ HC\perp BC\end{matrix}\right.\Rightarrow BC\perp (SHC)\Rightarrow BC\perp HT\)

    Do đó \(HT\perp (SBC)\Rightarrow d(H,(SBC))=HT=\sqrt{\frac{SH^2.HC^2}{SH^2+HC^2}}=\sqrt{\frac{SH^2.AB^2}{SH^2+AB^2}}=\sqrt{2}\Rightarrow SH=\sqrt{6}a\)

    Từ trung điểm $O$ của $AC$ dựng trục vuông góc với mặt phẳng $(ABC)$. Trên trục đó ta lấy điểm $I$ là tâm mặt cầu ngoại tiếp.

    \(IS^2=IA^2=IH^2\Leftrightarrow (\overrightarrow{IO}+\overrightarrow{OH}+\overrightarrow{HS})^2=IO^2+OH^2\)

    \(\Leftrightarrow HS^2+2\overrightarrow{IO}.\overrightarrow{HS}=0\)

    Do \(\overrightarrow {SH}\parallel \overrightarrow {IO}\Rightarrow \overrightarrow {IO}=k\overrightarrow{SH}\). Thay vào PT trên có $k=\frac{1}{2}$

    \(\Rightarrow IO=\frac{\sqrt{6}a}{2}\Rightarrow IA=\sqrt{IO^2+AO^2}=\sqrt{3}a\)

    \(\Rightarrow S_{\text{mặt cầu}}=4\pi R^2=12a^2\pi\)

      bởi Tạ Văn Đón Đón 10/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON