ADMICRO
VIDEO

Cm họ đt (C_m): y=2mx^3-x^2+(2m+1)x-m^2+2 luôn tiếp xúc với đường cong cố định

Chứng minh rằng họ đường thẳng sau luôn tiếp xúc với một đường cong cố định \(\left(C_m\right):y=2mx^3-x^2+\left(2m+1\right)x-m^2+2\)

 
Theo dõi Vi phạm
ADSENSE

Trả lời (1)

  • Giả sử \(M\left(x_0;y_0\right)\) là điểm mà họ \(\Delta_{\alpha}\) không đi qua. Khi đó phương trình sau vô nghiệm với mọi m : \(m^2-2\left(x^3_0+x_0\right)m+y_0+x^2_0-x_0-2=0\)

               \(\Leftrightarrow\Delta'=\left(x^3_0+x_0\right)^2-\left(y_0+x^2_0-x_0-2\right)< 0\)

               \(\Leftrightarrow y_0>x^6_0+2x^4_0+x_0+2\)

    Xét phương trình : \(2mx^3-x^2+\left(2m+1\right)x-m^2+2=x^6+2x^4+x+2\)

                           \(\Leftrightarrow m^2-2\left(x^3+x\right)m+\left(x^3+x\right)^2=0\)

                           \(\Leftrightarrow\left(x^3+x-m\right)^2=0\) (*)

    Vì phương trình \(x^3+x-m=0\) luôn có nghiệm nên (*) luôn có nghiệm bội.

    Vậy \(\left(C_m\right)\) luôn tiếp xúc với đường cong \(y=x^6+2x^4+x+2\)

      bởi Nguyễn Thị Tường Vy 26/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

MGID

Các câu hỏi mới

ADMICRO

 

YOMEDIA
ON