YOMEDIA
NONE

Xác định hệ số của số hạng chứa \({x^4}\) trong khai triển \({\left( {{x^2} - \dfrac{2}{x}} \right)^n}\) nếu biết tổng các hệ số của ba số hạng đầu trong khai triển đó bằng \(97\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có \({\left( {{x^2} - \dfrac{2}{x}} \right)^n} = C_n^0{\left( {{x^2}} \right)^n} +\)

    \(C_n^1{\left( {{x^2}} \right)^{n - 1}}.\left( { - \dfrac{2}{x}} \right) +\)

    \(C_n^2{\left( {{x^2}} \right)^{n - 2}}.{\left( { - \dfrac{2}{x}} \right)^2} + ...\)

    Theo giả thiết, ta có:

    \(\begin{array}{l}C_n^0 - 2C_n^1 + 4C_n^2 = 97\\ \Leftrightarrow 1 - 2n + 2n\left( {n - 1} \right) - 97 = 0\\ \Leftrightarrow {n^2} - 2n - 48 = 0\\ \Leftrightarrow \left[ \begin{array}{l}n = 8\\n =  - 6{\rm{ }}\left( \text{loại} \right)\end{array} \right.\end{array}\)

    Vậy \(n = 8.\)

    Từ đó ta có: \({\left( {{x^2} - \dfrac{2}{x}} \right)^8} \)

    SHTQ: \(T_{k+1}= {C_8^k{{\left( {{x^2}} \right)}^{8 - k}}{{\left( { - \dfrac{2}{x}} \right)}^k} }\)

    \( = C_8^k.{x^{16 - 2k}}.\frac{{{{\left( { - 2} \right)}^k}}}{{{x^k}}} \) \(= C_8^k{x^{16 - 2k - k}}{\left( { - 2} \right)^k}\)

    \(={{{\left( { - 2} \right)}^k}.C_8^k.{x^{16 - 3k}}} \).

    Số hạng chứa \(x^4\) ứng với \(16 - 3k = 4 \Leftrightarrow k = 4.\)

    Do đó hệ số của số hạng chứa \({x^4}\) là \({\left( { - 2} \right)^4}.C_8^4 = 1120\).

      bởi Nguyen Nhan 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON