YOMEDIA
NONE

Tìm hệ số của số hạng chứa x5 trong khai triển nhị thức Newton của biểu thức \((1+3x)^{2n}\)

Tìm hệ số của số hạng chứa x5 trong khai triển nhị thức Newton của biểu thức \((1+3x)^{2n}\), biết rằng \(A_{n}^{3}+2A_{n}^{2}=100\) (là số nguyên dương).

Theo dõi Vi phạm
ATNETWORK

Trả lời (2)

  • \(A_{ n}^{3}+2A_{ n}^{2}=100\Leftrightarrow n^3-n^2-100=0\Leftrightarrow n=5\)
    Khi đó: \((1+3x)^10=\sum_{k=0}^{10}C_{10}^{k}(3x)^k=\sum_{k=0}^{10}C_{10}^{k}3^kx^k\)
    Số hạng x5 chứa ứng với k = 5
    Vậy hệ số của số hạng chứa x5 là \(C_{10}^{5}.3^5=61236\)

      bởi Đào Thị Nhàn 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON