YOMEDIA
NONE

Hãy rút gọn biểu thức \(\displaystyle A = {{{\mathop{\rm s}\nolimits} {\rm{inx}} + \sin 3{\rm{x}} + \sin 5{\rm{x}}} \over {{\mathop{\rm cosx}\nolimits} + \cos 3x + \cos5x}}\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có:

    \(\sin x + \sin 3x + \sin 5x \\= (\sin 5x + \sin x) + \sin 3x\\= 2\sin {{5x + x} \over 2}.\cos {{5x - x} \over 2} + \sin 3x \\= 2\sin 3x  \cos 2x + \sin 3x\\= \sin 3x (2\cos 2x + 1) \, \, \, \, (1)\) 

    \( \cos x + \cos3x + \cos5x \\= (\cos 5x + \cos x )+\cos3x \\ = 2\cos \dfrac{{5x + x}}{2}\cos \dfrac{{5x - x}}{2}+ \cos3x \\= 2\cos3x . \cos2x + \cos3x \\= \cos3x (2\cos2x + 1) \, \, \, (2)\)

    Từ (1) và (2) ta có:

    \(A = \dfrac{{\sin 3x\left( {2\cos 2x + 1} \right)}}{{\cos 3x\left( {2\cos 2x + 1} \right)}}\) \(= {{\sin 3x} \over {\cos 3x}} = \tan 3x\)

    Vậy \(A= \tan 3x.\)

      bởi Nguyễn Thủy 30/08/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON