Hãy nêu sự biến thiên của hàm số sau: \(y = {x \over {x + 1}}\) trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\)
Trả lời (1)
-
Với hai số phân biệt \(x_1\) và \(x_2\) thuộc tập xác định của hàm số, ta có :
\(\eqalign{
& f\left( {{x_2}} \right) - f\left( {{x_1}} \right) = {{{x_2}} \over {{x_2} + 1}} - {{{x_1}} \over {{x_1} + 1}} \cr
& = \frac{{{x_2}\left( {{x_1} + 1} \right) - {x_1}\left( {{x_2} + 1} \right)}}{{\left( {{x_2} + 1} \right)\left( {{x_1} + 1} \right)}} \cr&= \frac{{{x_2}{x_1} + {x_2} - {x_1}{x_2} - {x_1}}}{{\left( {{x_2} + 1} \right)\left( {{x_1} + 1} \right)}}\cr&= {{{x_2} - {x_1}} \over {\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}}, \cr
& {{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)} \over {{x_2} - {x_1}}} = {1 \over {\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}} \cr} \)Do đó:
- Nếu \(x_1 < -1\) và \(x_2 < -1\) thì \(\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) > 0\) và \({1 \over {\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}} > 0,\) suy ra hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\)
- Nếu \(x_1 > -1\) và \(x_2 > -1\) thì \(\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) > 0\) và \({1 \over {\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}} > 0,\) suy ra hàm số cũng đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\)
bởi Pham Thi 22/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời