YOMEDIA
NONE

Cho đường tròn \((C)\) có phương trình: \({x^2} + {\rm{ }}{y^2} - {\rm{ }}4x{\rm{ }} + {\rm{ }}8y{\rm{ }} - {\rm{ }}5{\rm{ }} = {\rm{ }}0\). Viết phương trình tiếp tuyến với \((C)\) vuông góc với đường thẳng \(3x – 4y + 5 = 0.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đường thẳng \(3x – 4y + 5 = 0\) có VTPT \(\overrightarrow n(3;-4)\)\( \Rightarrow \overrightarrow {{u_d}}  = \left( {4;3} \right)\) là VTCP của d.

    Tiếp tuyến \(d'\) vuông góc với đường thẳng \(3x – 4y + 5 = 0\) nên VTPT \(\overrightarrow {n'}=\overrightarrow {{u_d}}=(4;3)\) 

    Phương trình \(d'\) có dạng là: \(4x+3y+c=0\)

    \(d'\) tiếp xúc \((C)\)

    \(\Leftrightarrow d(I,d')=R\) \(\displaystyle  \Leftrightarrow {{|4.2 + 3.( - 4) + c|} \over {\sqrt {{4^2} + {3^2}} }} = 5 \) \(\Leftrightarrow |c - 4| = 25\)

    \(\Leftrightarrow \left[ \matrix{
    c - 4 = 25 \hfill \cr 
    c - 4 = - 25 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
    c = 29 \hfill \cr 
    c = - 21 \hfill \cr} \right.\)

    Vậy có hai phương trình tiếp tuyến thỏa mãn yêu cầu bài toán là:

    \(4x+3y+29=0\) và \(4x+3y-21=0\).

      bởi Nguyễn Minh Hải 20/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON