Bài học này giúp học sinh nắm được công thức tính độ cứng lò xo, các công thức biến đổi khi cắt, ghép lò xo (ghép nối tiếp, ghép song song). Qua đó có thêm công cụ tính độ cứng, xét tính ⍵ của các lò xo, có thêm công thức giải được nhiều bài toán.
-
Video liên quan
-
Nội dung
-
Bài 1: Tìm khoảng đơn điệu của hàm số
Bài 1: Tìm khoảng đơn điệu của hàm số
Bài giảng sẽ giúp các em nắm được kiến thức cơ bản về cách tìm khoảng đơn điệu của hàm số như: Định nghĩa Điều kiện đủ để hàm số đơn điệu Các bước tìm khoảng đơn điệu của hàm số00:55:29 5168 TS. Phạm Sỹ Nam
-
Bài 2: Tìm tham số để hàm số đơn điệu trên một miền
Bài 2: Tìm tham số để hàm số đơn điệu trên một miền
Bài giảng sẽ giúp các em nắm được kiến thức cơ bản về cách tìm tham số để hàm số đơn điệu trên một miền như: Công thức tính. Điều kiện đủ để hàm số đơn điệu trên một miền.00:28:42 1080 TS. Phạm Sỹ Nam
-
Bài 3: Ứng dụng tính đơn điệu giải phương trình
Bài 3: Ứng dụng tính đơn điệu giải phương trình
Bài giảng sẽ giúp các em nắm kỹ hơn về lý thuyết và một số ví dụ cụ thể về ứng dụng tính đơn điệu giải phương trình.00:32:49 1080 TS. Phạm Sỹ Nam
-
Bài 4: Ứng dụng tính đơn điệu giải bất phương trình
Bài 4: Ứng dụng tính đơn điệu giải bất phương trình
Bài giảng Ứng dụng tính đơn điệu giải bất phương trình sẽ giúp các em nắm được lý thuyết và bài tập để các em củng cố kiến thức.00:32:29 870 TS. Phạm Sỹ Nam
-
Bài 5: Ứng dụng tính đơn điệu giải hệ phương trình
Bài 5: Ứng dụng tính đơn điệu giải hệ phương trình
Bài giảng Ứng dụng tính đơn điệu giải hệ phương trình sẽ giúp các em nắm kỹ hơn cách giải hệ phương trình, cách tìm tính nghịch biến, đồng biến về tính đơn điệu của hệ phương trình.00:29:14 946 TS. Phạm Sỹ Nam
-
Bài 6: Ứng dụng tính đơn điệu chứng minh bất đẳng thức
Bài 6: Ứng dụng tính đơn điệu chứng minh bất đẳng thức
Bài giảng ứng dụng tính đơn điệu chứng minh bất đẳng thức gồm có 2 phần nội dung chính: Lý thuyết Các ví dụ cụ thể nhằm giúp các em chứng minh được đồng biến và nghịch biến.00:43:58 1076 TS. Phạm Sỹ Nam
Chúng ta tìm hiểu dạng đầu tiên của con lắc lo xo là Cắt - Ghép lò xo.
Ở dạng này các em cần chú ý, trong đề thi những câu rơi vào dạng này thường là những câu khó, nhưng nếu các em không biết thì rất là tiếc, bời vì nó sẽ khó với những bạn không biết và sẽ không khó với những bạn đã ôn tập.
* Cắt lò xo
Ta có:
\(\left.\begin{matrix} \cdot \ k_0 = \frac{E.S}{\ell _0}\\ \cdot \ k_1 = \frac{E.S}{\ell _1}\\ \cdot \ k_2 = \frac{E.S}{\ell _2} \end{matrix}\right\} k_0. \ell _0 = k_1. \ell _1 = k_2. \ell _2 = ... =\) hằng số
⇒ Độ cứng k của lò xo tỉ lệ nghịch với chiều dài ℓ của nó
* Ghép lò xo
+ Ghép song song
Tại vị trí cân bằng
\(\overrightarrow{P} + \underbrace{ \overrightarrow{F}_{dh_1} + \overrightarrow{F}_{dh_2}}_{\overrightarrow{F}_{dh}} = \overrightarrow{O}\)
Vì \(\Delta \ell _1 = \Delta \ell _2 = \Delta \ell\)
\(\Rightarrow k. \Delta \ell = k_1. \Delta \ell _1 + k_2. \Delta \ell _2\)
\(\Rightarrow k_{//} = k_1+k_2, \ k_{//} > k_1,k_2\)
\(\Rightarrow k_{//} = k_1+k_2\)
+ Ghép nối tiếp
Ta có: \(x = x_1 + x_2\)
Mà:
\(\left.\begin{matrix} x_1 = \frac{F_{dh_1}}{k_1}\\ x_2 = \frac{F_{dh_2}}{k_2}\\ x = \frac{F}{k} \ \ \ \ \end{matrix}\right\}\) Mà: \(F = F_{dh_1} = F_{dh_2} \Rightarrow x = x_1+x_2 \Rightarrow \frac{1}{k_{nt}} = \frac{1}{k_1} + \frac{1}{k_2}\)
\(\Rightarrow k_{nt} = \frac{k_1.k_2}{k_1 + k_2} < k_1, k_2\)
VD1: Một lò xo có chiều dài ℓ0, độ cứng 120 N/m. Cắt lò xo thành 2 đoạn \(\ell _1 = \frac{3}{8} \ell _0\) và ℓ2 độ cứng tương ứng là k1, k2. Tìm k1, k2?
Giải:
\(\\ k_0 = 120 \ N/m, \ell _1 = \frac{3}{8} \ell _0\\ \ell _1 + \ell _2 = \ell _0 \Rightarrow \ell _2 = \frac{5}{8} \ell _0\)
Ta có: \(\left\{\begin{matrix} k_1 \ell _1 = k_0 \ell _0 \Rightarrow k_1 = \frac{k_0 \ell _0}{\ell _1} = 120.\frac{8}{3} = 320 \ (N/m) \\ k_2 \ell _2 = k_0 \ell _0 \Rightarrow k_2 = \frac{k_0 \ell _0}{\ell _2} = 120.\frac{8}{5} = 192\ (N/m) \end{matrix}\right.\)
VD2: Một lò xo có độ cứng 60 N/m, nếu cắt lò xo thành 2 phần có chiều dài bằng nhau rồi mang ghép song song lại với nhau thì được 1 lò xo có độ cứng bao nhiêu?
Giải:
\(\\ \ell _1 = \ell _2 = \frac{\ell _0}{2} \Rightarrow k_1 = k_2 = 2k_0\\ \Rightarrow k_1 = k_2 = 2.60 = 120 \ (N/m)\\ \Rightarrow k_{//} = k_1 + k_2 = 240 \ (N/m)\)