-
Câu hỏi:
Trong không gian với hệ trục tọa độ Oxyz, cho \(M\left( {2;3; - 1} \right),N\left( { - 2; - 1;3} \right)\). Tìm tọa độ điểm E thuộc trục hoành sao cho tam giác MNE vuông tại M.
- A. \(\left( { - 2;0;0} \right)\).
- B. \(\left( {0;6;0} \right)\).
- C. \(\left( {6;0;0} \right)\).
- D. \(\left( {4;0;0} \right)\).
Lời giải tham khảo:
Đáp án đúng: C
\(\overrightarrow {MN} = \left( { - 4; - 4;4} \right)\)
Do E thuộc trục hoành nên giả sử \(E\left( {m;0;0} \right) \Rightarrow \overrightarrow {ME} = \left( {m - 2; - 3;1} \right)\)
\(\Delta MNE\) vuông tại M \( \Rightarrow \overrightarrow {ME} .\overrightarrow {MN} = 0\).
\(\begin{array}{l} \Leftrightarrow - 4\left( {m - 2} \right) - 4.\left( { - 3} \right) + 4.1 = 0 \Leftrightarrow - 4m + 24 = 0 \Leftrightarrow m = 6\\ \Rightarrow E\left( {6;0;0} \right)\end{array}\)
Vậy \(E\left( {6;0;0} \right)\).
Chọn: C
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho số phức \(z = - 4 - 6i\). Gọi M là điểm biểu diễn số phức \(\overline z \). Tung độ của điểm M là:
- Tìm nguyên hàm của hàm số \(f\left( x \right) = \sin 3x\).
- Biết \(\int\limits_1^2 {\dfrac{{\ln x}}{{{x^2}}}dx} = \dfrac{b}{c} + a\ln 2\) (với a là số thực, b, c là các số nguyên dương và \(\dfrac{b}{c}\) là phân số tối giản). Tính giá trị của \(2a + 3b + c\).
- Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(M\left( { - 2;6;1} \right),M'\left( {a;b;c} \right)\) đối xứng nhau qua mặt phẳng \(\left( {Oyz} \right)\). Tính \(S = 7a - 2b + 2017c - 1\).
- Tìm tham số m để \(\int\limits_0^1 {{e^x}\left( {x + m} \right)dx = e} \).
- Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) cắt ba trục Ox, Oy, Oz lần lượt tại A, B, C; trực tâm tam giác \(ABC\) là \(H\left( {1;2;3} \right)\). Phương trình của mặt phẳng (P) là:
- Biết \(\int\limits_1^2 {\dfrac{{xdx}}{{\left( {x + 1} \right)\left( {2x + 1} \right)}} = a\ln 2 + b\ln 3 + c\ln 5} \). Tính \(S = a + b + c\)
- Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên đoạn \(\left[ { - 2;1} \right]\) và \(f\left( { - 2} \right) = 3,\,f\left( 1 \right) = 7\). Tính \(I = \int\limits_{ - 2}^1 {f'\left( x \right)dx} \).
- Cho số phức sau \(z = 7 - i\sqrt 5 \). Phần thực và phần ảo của số phức \(\overline z \) lần lượt là
- Cho số phức z thỏa mãn \(\left| z \right| = 12\). Biết rằng tập hợp các điểm biểu diễn các số phức \(w = \left( {8 - 6i} \right)z + 2i\) là một đường tròn. Tính bán kính r của đường tròn đó.
- Trong không gian với hệ tọa độ \(\left( {O;\overrightarrow i ,\overrightarrow j ,\overrightarrow k } \right)\) cho vectơ \(\overrightarrow {OM} = \overrightarrow j - \overrightarrow k \). Tìm tọa độ điểm M.
- Hãy chọn khẳng định sai về phép tính sau.
- Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - 2y - z + 3 = 0\) và điểm \(M\left( {1; - 2;13} \right)\). Tính khoảng cách d từ M đến (P).
- Cho \(\int\limits_0^1 {f\left( {4x} \right)} dx = 4\). Tính \(I = \int\limits_0^4 {f\left( x \right)} dx\).
- Thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(d:y = x\) xoay quanh trục Ox bằng:
- Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int\limits_0^1 {f\left( x \right)dx} = 2,\,\int\limits_0^3 {f\left( x \right)dx} = 6\). Tính \(I = \int\limits_{ - 1}^1 {f\left( {\left| {2x - 1} \right|} \right)dx} \).
- Cho \(\int\limits_2^4 {f\left( x \right)dx} = 10\) và \(\int\limits_2^4 {g\left( x \right)dx} = 5\). Tính \(I = \int\limits_2^4 {\left[ {3f\left( x \right) - 5g\left( x \right)} \right]dx} \).
- Tìm phần ảo của số phức z thỏa mãn \(z + 2\overline z = {\left( {2 - i} \right)^3}\left( {1 - i} \right)\).
- Trong không gian với hệ trục tọa độ Oxyz. Mặt cầu tâm \(I\left( {1;3;2} \right)\), bán kính \(R = 4\) có phương trình
- Cho hai số phức \({z_1} = m + 3i,\,\,{z_2} = 2 - \left( {m + 1} \right)i\) với \(m \in \mathbb{R}\). Tìm các giá trị của m để \({z_1}.{z_2}\) là số thự
- Cho \(A\left( {2;1; - 1} \right),B\left( {3;0;1} \right),C\left( {2; - 1;3} \right)\), điểm \(D\) nằm trên trục \(Oy\) và thể tích tứ diện \(ABCD\) bằng 5. Tọa độ điểm D là:
- Giả sử \(\int\limits_a^b {f\left( x \right)dx} = 2,\,\,\int\limits_c^b {f\left( x \right)dx} = 3\) với \(a < b < c\) thì \(\int\limits_a^c {f\left( x \right)dx} \) bằng:
- Số phức \(z = \dfrac{{2 + i}}{{4 + 3i}}\) bằng
- Cho \(\int\limits_1^a {\dfrac{{x + 1}}{x}dx} = e,\,\left( {a > 1} \right)\). Khi đó, giá trị của a là:
- Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = f\left( x \right)\) và hàm số \(y = g\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) và hai đường thẳng \(x = a,x = b\) là:
- Gọi \({z_1},{z_2}\) là các nghiệm của phương trình \({z^2} + 4z + 5 = 0\). Đặt \(w = {\left( {1 + {z_1}} \right)^{100}} + {\left( {1 + {z_2}} \right)^{100}}\). Khi đó:
- Biết \(\int\limits_1^{\sqrt 3 } {x\sqrt {{x^2} + 1} dx} = \dfrac{2}{3}\left( {a - \sqrt b } \right)\), với \(a,b\) là các số nguyên dương. Mệnh đề nào sau đây đúng?
- Cho hai hàm số \(f,\,g\) liên tục trên đoạn \(\left[ {a;b} \right]\) và số thực k tùy ý. Trong các khẳng định sau, khẳng định nào sai?
- Trong không gian với hệ trục tọa độ Oxyz, cho \(\overrightarrow u = \left( { - 2;3;0} \right),\overrightarrow v = \left( {2; - 2;1} \right)\). Độ dài của vectơ \(\overrightarrow {\bf{w}} = \overrightarrow u - 2\overrightarrow v \) là
- Tính diện tích hình phẳng giới hạn bởi \(\left( P \right):y = {x^2} - 4x + 3\) và trục Ox.
- Trong không gian với hệ trục tọa độ Oxyz, cho \(M\left( {2;3; - 1} \right),N\left( { - 2; - 1;3} \right)\). Tìm tọa độ điểm E thuộc trục hoành sao cho tam giác MNE vuông tại M.
- Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng sau \(\left( \alpha \right):2x - 3y - z - 1 = 0\).
- Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{2x - 1}}\) và \(F\left( 2 \right) = 3 + \dfrac{1}{2}\ln 3\). Tính \(F\left( 3 \right)\).
- Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC , biết \(A\left( {1;1;1} \right),B\left( {5;1; - 2} \right),C\left( {7;9;1} \right)\). Tính độ dài đường phân giác trong AD của góc A.
- Cho hai điểm \(A\left( {3;3;1} \right),\,B\left( {0;2;1} \right)\) và mặt phẳng \(\left( \alpha \right):x + y + z - 7 = 0\). Đường thẳng d nằm trong \(\left( \alpha \right)\) sao cho mọi điểm thuộc d cách đều hai điểm A, B có phương trình là:
- Tìm độ dài đường kính của mặt cầu \(\left( S \right)\) có phương trình \({x^2} + {y^2} + {z^2} - 2y + 4z + 2 = 0\).
- Biết trọng tâm của tam giác ABC là \(G\left( { - 1; - 3;2} \right)\). Mặt phẳng \(\left( \alpha \right)\) song song với mặt phẳng nào sau đây?
- Trong không gian với hệ trục tọa độ Oxyz, cho vectơ \(\overrightarrow n = \left( {2; - 4;6} \right)\). Trong các mặt phẳng có phương trình sau đây, mặt phẳng nào nhận vectơ \(\overrightarrow n \) làm vectơ pháp tuyến?
- Giả sử \(I = \int\limits_0^{\dfrac{\pi }{4}} {\sin 3x.\sin 2xdx} = \dfrac{{\sqrt 2 }}{2}\left( {a + b} \right)\), khi đó, giá trị \(a + b\) là:
- Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( P \right)\) đi qua gốc tọa độ và nhận \(\overrightarrow n = \left( {3;2;1} \right)\) là vectơ pháp tuyến. Phương trình của mặt phẳng \(\left( P \right)\) là: