-
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz cho điểm \(I (1 ; 2 ; 3)\text{ và mặt phẳng }(P): 2 x-2 y-z-4=0\). Mặt cầu tâm I tiếp xúc mặt phẳng (P) tại điểm H . Tìm tọa độ điểm H .
- A. H(3 ; 0 ; 2)
- B. H(-3 ; 0 ; -2)
- C. H(-1 ; 4 ; 4)
- D. H(-1 ; -1 ; 0)
Lời giải tham khảo:
Đáp án đúng: A
Mặt cầu tâm I tiếp xúc mặt phẳng (P) tại điểm H, suy ra H là hình chiếu vuông góc của tâm I lên mặt phẳng (P).
Vec tơ pháp tuyến : \(\vec n(2;-2;-1)\) của (P) chính là một vec tơ chỉ phương của đương thẳng IH.
Phương tình đường thẳng IH: \(\left\{\begin{array}{l} x=1+2 t \\ y=2-2 y \\ z=3-t \end{array}\right.\)
Thay tọa độ H vào phương trình mặt phẳng (P) ta có:
\(2(1+2 t)-2(2-2 t)-3+t-4=0 \Leftrightarrow t=1 \Rightarrow H(3 ; 0 ; 2)\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Công thức nguyên hàm nào sau đây là công thức S?
- Kết quả tính \(\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x\) là
- Hàm số \(F(x)=7 \sin x-\cos x+1\) là một nguyên hàm của hàm số nào sau đây?
- Nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{x} - \frac{1}{{{x^2}}}\) là :
- Họ nguyên hàm của hàm số \(f(x)=\tan ^{2} x \text { là }\)
- Cho tích phân \(I=\int_{0}^{\frac{\pi}{2}} \sqrt{1+3 \cos x} \cdot \sin x d x\) .Đặt \(u=\sqrt{3 \cos x+1}\).Khi đó I bằng
- Nếu \(\int_{-2}^{0}\left(5-e^{-x}\right) d x=K-e^{2}\) thì giá trị của K là:
- Cho hàm số f(x) liên tục trên \(\mathbb{R}\) và\(f(x)+f(-x)=\cos ^{4} x\) với mọi \(x\in\mathbb{R}\). Giá trị của tích phân \(I=\int\limits_{\frac{-\pi}{2}}^{\frac{\pi}{2}} f(x) d x\)
- Tích phân \(I=\int_{0}^{\frac{\pi}{3}} \sin ^{2} x \tan x d x\)có giá trị bằng
- Tích phân \(I=\int_{0}^{2 \pi} \sqrt{1+\sin x} d x\) có giá trị bằng
- Tích phân \(I=\int_{0}^{\frac{\pi}{2}} \frac{4 \sin ^{3} x}{1+\cos x} d x\) có giá trị bằng
- Tích phân \(I=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x \cos 2 x d x\) có giá trị bằng
- Tích phân \(\int_{1}^{e}(2 x-5) \ln x d x\) bằng
- Cho hàm số f liên tục trên đoạn [0;3]. Nếu \(\int_{1}^{2} f(x) d x=4\) thì tích phân \(\int_{1}^{2}[k x-f(x)] d x=-1\) giá trị k bằng
- Cho hàm số f liên tục trên \(\mathbb{R}\) . Nếu\(\begin{aligned} &\int_{1}^{5} 2 f(x) d x=2 \text { và } \int_{1}^{3} f(x) d x=7 \text { thì } \int_{3}^{5} f(x) d x \end{aligned}\) có giá trị bằng:
- Cho hàm số \(y=f( x ) ,y=g( x )\) liên tục trên [ a;b ]. Gọi H là hình phẳng giới hạn bởi hai đồ thị y=f( x ), y=g( x) và các đường thẳng x=a, x=b. Diện tích H được tính theo công thức
- Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f( x ),y = g( x ) \) và hai đường thẳng x = a,x = b (a < b) là:
- Diện tích S của hình phẳng giới hạn bởi các đường y = 2x, x = - 3, x = - 2. và trục hoành được tính bằng công thức nào dưới đây?
- Hình phẳng giới hạn bởi đồ thị hàm số \(y=f( x ) \) liên tục trên đoạn [ 1; 3 ], trục Ox và hai đường thẳng (x=1, x=3 ) có diện tích là:
- Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f( x ) = x^2 - 1\), trục hoành và hai đường thẳng x = - 1; x = - 3 là:
- Trong không gian với hệ tọa độ Oxyz, cho điểm A( -3;2;-1 ). Tọa độ điểm A’ đối xứng với A qua gốc tọa độ O là:
- Tọa độ điểm M là trung điểm đoạn thẳng AB là:
- Trong không gian Oxyz, cho điểm M(1;0;2) Mệnh đề nào sau đây là Đ?
- Trong không gian (Oxyz ), cho điểm M(1;2;3) Hình chiếu vuôg góc của M trên Oxz là điểm nào sau đây.
- Trong không gian Oxyz, cho điểm M(1;0;3) thuộc
- Trong không gian với hệ tọa độ Oxyz cho điểm \(I (1 ; 2 ; 3)\text{ và mặt phẳng }(P): 2 x-2 y-z-4=0\). Mặt cầu tâm I tiếp xúc mặt phẳng (P) tại điểm H . Tìm tọa độ điểm H .
- Trong không gian với hệ tọa độ Oxyz , hình chiếu của điểm M (1;-3;-5) trên mặt phẳng (Oyz) có tọa độ là
- Trong không gian với hệ trụcOxyz , tìm tọa độ hình chiếu vuông góc của điểm A(0;1;2) trên mặt phẳng \((P): x+y+z=0\)
- Trong không gian với hệ tọa độ Oxyz , cho \(M(3 ; 4 ; 5)\text{ và măt phẳng }(P): x-y+2 z-3=0\) . Hình chiếu vuông góc của M lên mặt phẳng (P) là
- Trong không gian Oxyz, cho mặt phẳng \((P): 2 x+2 y-z-3=0 \text { và điểm } M(1 ;-2 ; 4)\) . Tìm tọa độ hình chiếu vuông góc của điểm M trên mặt phẳng (P)
- Trong hệ tọa độ Oxyz, mặt cầu tâm I(1 ; 0 ;-2) bán kính R=5 có phương trình là
- Trong không gian với hệ trục Oxyz , cho điềm A(1 ; 0 ; 4), I(1 ; 2 ;-3). Mặt cầu (S) có tâm I và đi qua A có phương trình
- Trong không gian với hệ trục tọa độ Oxyz cho hai điềm M(6 ; 2 ;-5), N(-4 ; 0 ; 7) . Viết phương trình măt cầu đường kính MN?
- Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu (S ) có tâm I(1 ; 0 ;-3) và đi qua điểm M(2 ; 2 ;-1)
- Trong không gian Oxy , phương trình nào dưới đây là phương trình mặt cầu tâm I(1 ; 0 ;-2), bán kính r=4 ?
- Trong không gian với hệ trục tọa độ Oxyz , cho tam giác ABC có A(-1;0;-1), B(0;2;-1), C (1; 2; 0). Diện tích tam giác ABC bằng?
- Trong không gian với hệ tọa độ Oxyz , cho bốn điểm A(1; -2;0), B(3;3;2) , C(-1;2;2)và D(3;3;1) . Độ dài đường cao của tứ diện ABCD hạ từ đỉnh D xuống mặt phẳng (ABC) bằng
- Trong không gian Oxyz , cho tứ diện ABCD trong đó A(2;3;1),B (4;1;- 2), C(6;3;7), D( -5; -4;8). Tính độ dài đường cao kẻ từ D của tứ diện
- Cho bốn điểm \(A(a;-1;6),B(-3;-1;-4). C(5;-1;0), D(1;2;1) \) thể tích của tứ diện ABCD bằng 30 . Giá trị của a là.
- Trong không gian với hệ tọa độ Oxyz cho ba điểm A(0;1;1); B(1;1;0); C (1;0;1) và mặt phẳng \((P): x+y-z-1=0\). Điểm M thuộc (P) sao cho MA=MB=MC. Thể tích khối chóp M.ABC là