YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 4\) và điểm \(M\left( {3;1;2} \right)\). Điểm A di chuyển trên mặt cầu \(\left( S \right)\) thỏa mãn \(\overrightarrow {OA} .\overrightarrow {MA}  =  - 3\) thì A thuộc mặt phẳng nào trong các mặt phẳng sau?

    • A. x + y + 6z - 2 = 0
    • B. 3x + y + 2z - 3 = 0
    • C. 5x + y - 2z - 4 = 0
    • D. 2x - 4z - 1 = 0

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi \(A\left( {a;b;c} \right)\)

    \( \Rightarrow \overrightarrow {OA}  = \left( {a;b;c} \right);\)\(\overrightarrow {MA}  = \left( {a - 3;b - 1;c - 2} \right)\)

    Khi đó ta có:

    \(\begin{array}{l}\overrightarrow {OA} .\overrightarrow {MA}  = a\left( {a - 3} \right) + b\left( {b - 1} \right) + c\left( {c - 2} \right)\\ \Leftrightarrow {a^2} + {b^2} + {c^2} - 3a - b - 2c =  - 3\,\,\,\left( 1 \right)\end{array}\)

    Mà \(A \in \left( S \right)\)

    \(\begin{array}{l} \Rightarrow {\left( {a - 1} \right)^2} + {b^2} + {\left( {c + 2} \right)^2} = 4\\ \Leftrightarrow {a^2} + {b^2} + {c^2} - 2a + 4c =  - 1\,\,\,\left( 2 \right)\end{array}\)

    Trừ vế theo vế của (2) cho (1) ta có: \(a + b + 6c = 2\)\( \Leftrightarrow a + b + 6c - 2 = 0\)

    Vậy điểm A thuộc mặt phẳng \(x + y + 6z - 2 = 0.\)

    ATNETWORK

Mã câu hỏi: 256029

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON