YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian Oxyz cho hai điểm \(A\left( 1;0;0 \right),B\left( 3;4;-4 \right)\). Xét khối trụ \(\left( T \right)\) có trục là đường thẳng AB và có hai đường tròn đáy nằm trên mặt cầu đường kính AB. Khi \(\left( T \right)\) có thể tích lớn nhất, hai đáy của \(\left( T \right)\) nằm trên hai mặt phẳng song song lần lượt có phương trình là \(x+by+cz+{{d}_{1}}=0\) và \(x+by+cz+{{d}_{2}}=0\). Khi đó giá trị của biểu thức \(b+c+{{d}_{1}}+{{d}_{2}}\) thuộc khoảng nào sau đây?

    • A. (0;21)
    • B. (-11;0)
    • C. (-29;-18)
    • D. (-20;-11)

    Lời giải tham khảo:

    Đáp án đúng: C

    Mặt cầu đường kính AB có tâm \(I\left( 2;2;-2 \right)\) và bán kính bằng 3.

    Gọi \(x,\left( 0<x<3 \right)\) là bán kính đáy của \(\left( T \right)\), khi đó \(\left( T \right)\) có chiều cao bằng \(h=2\sqrt{9-{{x}^{2}}}\), do đó thể tích của \(\left( T \right)\) bằng

    \(V=2\pi {{x}^{2}}\sqrt{9-{{x}^{2}}}=4\pi .\sqrt{\frac{{{x}^{2}}}{2}.\frac{{{x}^{2}}}{2}.\left( 9-{{x}^{2}} \right)}\le 4\pi \sqrt{{{\left( \frac{\frac{{{x}^{2}}}{2}+\frac{{{x}^{2}}}{2}+\left( 9-{{x}^{2}} \right)}{3} \right)}^{3}}}=12\pi \sqrt{3}\).

    \(\left( T \right)$\) có thể tích lớn nhất bằng \({{V}_{\max }}=12\pi \sqrt{3}\) khi \(x=\sqrt{6}\).

    Khi đó gọi \(\left( P \right)\) là mặt phẳng chứa đường tròn đáy của \(\left( T \right), \left( P \right)\) có phương trình tổng quát dạng x+2y-2z+d=0. Khoảng cách từ tâm \(I\left( 2;2;-2 \right)\) đến \(\left( P \right)\) bằng \(\sqrt{3}\) nên

    \(\frac{{\left| {2 + 2.2 - 2.\left( { - 2} \right) + d} \right|}}{3} = \sqrt 3 \Leftrightarrow \left[ \begin{array}{l} d = 3\sqrt 3 - 10\\ d = - 3\sqrt 3 - 10 \end{array} \right.\)

    Vậy \(b + c + {d_1} + {d_2} = 2 - 2 + 3\sqrt 3 - 10 - 3\sqrt 3 - 10 = - 20\)

    ATNETWORK

Mã câu hỏi: 270059

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON