-
Câu hỏi:
Tính chu vi của tam giác cân ABC. Biết AB = 6(cm); AC = 12(cm).
- A. 25(cm).
- B. 24(cm).
- C. 30 (cm).
- D. 15 (cm).
Lời giải tham khảo:
Đáp án đúng: C
Ta có tam giác ABC cân mà đầu bài cho AB = 6(cm); AC = 12(cm) nên tam giác đó không thể cân tại A mà chỉ có thể cân tại B hoặc C,
TH1: giả sử tam giác cân tại B thì ta có BA = BC = 6 (cm). Mà theo mối quan hệ giữa các cạnh trong tam giác ta có: BA + BC > AC tức là: 6 + 6 > 12 (vô lý). Vậy tam giác ABC không thể cân tại B.
TH2: Khi đó ta có tam giác ABC cân tại C tức là: CA = CB = 12(cm).
Khi đó chu vi của tam giác ABC là: 12 + 12 + 6 = 30 (cm).
Chọn C.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Biều thức \(M = {x^2} - 1\) bằng biểu thức nào sau đây?
- Cho hai đường tròn (O) và (O’) cắt nhau tại A, B. Tiếp tuyến tại A của đường tròn (O’) cắt (O) tại C và của (O) cắ (O’) tại D. Biết \(\widehat {ABC} = {75^0}\) . Tính \(\widehat {ABD}?\)
- Số đo 3 góc của một tam giác tỉ lệ với các số 2; 3; 5. Tìm số đo của góc nhỏ nhất.
- Trong các hình cho dưới đây, hình nào mô tả góc ở tâm?
- Tính \(M = \dfrac{{\sqrt {12} }}{{\sqrt 3 }}\).
- Cho \(P = \sqrt {4{a^2}} - 6a.\) Khẳng định nào sau đây đúng?
- Tính thể tích V của hình cầu có bán kính \(R = 3\left( {cm} \right).\)
- Cho \(P = \sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} + \sqrt {{{\left( {1 - \sqrt 3 } \right)}^2}} \) . Khẳng định nào sau đây đúng?
- Hãy chọn khẳng định nào sau đây sai?
- Tính khoảng cách d từ diều đến mặt đất tại thời điểm đó (giả sử dây diều căng và không giãn; kết quả làm tròn đến chữ số thập phân thứ hai).
- Tìm giá trị của m để hàm số \(y = \left( {2m - 1} \right)x + m + 2\) cắt trục hoành tại điểm có hoành độ bằng \( - \dfrac{2}{3}\) .
- Phương trình bậc hai \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có biệt thức \(\Delta = {b^2} - 4ac < 0\). Khẳng định nào sau đây đúng?
- Tìm tất cả các giá trị của a, b để hệ phương trình \(\left\{ \begin{array}{l}2x + by = - 4\\bx - ay = - 5\end{array} \right.\) có nghiệm (x;y) = (1;-2)
- Giải hệ phương trình \(\left\{ \begin{array}{l}2x - y = 1\\4x + y = 5\end{array} \right.\)
- Tính bán kính r của đường tròn nội tiếp tam giác đều ABC cạnh a.
- Trong các số sau, số nào là số nguyên tố.
- Cho một hình cầu có đường kính bằng 4 (cm). Tính diện tích S của hình cầu đó.
- Trong các hàm số sau, hàm số nào đồng biến với mọi \(x \in R?\)
- Tìm điều kiện của m để hàm số \(y = \left( {2m - 1} \right)x + 2\) luôn đồng biến.
- Cho tứ giác ABCD có \(AB = BC = CD = DA.\) Khẳng định nào sau đây đúng?
- Rút gọn biểu thức \(M = {\left( {x - y} \right)^2} - {\left( {x + y} \right)^2}.\)
- Tính chu vi của tam giác cân ABC. Biết AB = 6(cm); AC = 12(cm).
- Hãy giải phương trình sau : \({x^2} - 5x + 6 = 0.\)
- Cho tam giác ABC vuông tại A, đường cao AH và đường trung tuyến AM \(\left( {H,M \in BC} \right)\) . Biết chu vi của tam giác là 72cm và AM – AH = 7 (cm). Tính diện tích S của tam giác ABC.
- Cho các số a, b, c thỏa mãn \({a^2} + {b^2} + {c^2} + 6 = 2\left( {a + 2b + c} \right).\) Tính tổng \(T = a + b + c.\)
- Cho tam giác ABC có AB = 20(cm), BC = 12 (cm), CA = 16 (cm). Tính chu vi của đường tròn nội tiếp tam giác đã cho.
- Biết các cạnh của một tứ giác tỉ lệ với 2; 3; 4; 5 và độ dài cạnh lớn nhất hơn độ dài cạnh nhỏ nhất là 6(cm). Tính chu vi của tứ giác đó.
- Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} - m + 3 = 0\) (m là tham số). Tìm các giá trị của m để phương trình đã cho có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 10.\)
- Cho tam giác ABC, biết \(\widehat B = {60^0},AB = 6\left( {cm} \right),BC = 4\left( {cm} \right).\) Tính độ dài của cạnh AC.
- Mặt cầu (S) được gọi là ngoại tiếp hình lập phương ABCD.A’B’C’D’ nếu các đỉnh của hình laapoj phương đều thuộc mặt cầu (S). Biết hình lập phương có độ dài cạnh 2a, tính thể tích V của hình cầu ngoại tiếp hình lập phương đó.
- Cho \(\widehat {xOy} = {45^0}.\) Trên tia Oy lấy hai điểm A, B sao cho \(AB = \sqrt 2 \left( {cm} \right).\) Tính độ dài hình chiếu vuông góc của đoạn thẳng AB trên Ox.
- Giả sử tấm tôn có chiều dài là a, chiều rộng là b. Tính giá trị biểu thức \(P = {a^2} - {b^2}.\)
- Nếu cho vòi một chảy trong 1 giờ, rồi cho cả hai vòi chảy tiếp trong 4 giờ nữa thì số nước chảy vào bằng \(\dfrac{8}{9}\) bể. Hỏi nếu chảy một mình thì vòi một sẽ chảy trong thời gian t bằng bao nhiêu thì đầy bể?
- Kết quả rút gọn biểu thức \(A = \dfrac{x}{{x - 4}} + \dfrac{1}{{\sqrt x - 2}} + \dfrac{1}{{\sqrt x + 2}}\) với \(x \ge 0,x \ne 4\) có dạng \(\dfrac{{\sqrt x - m}}{{\sqrt x + n}}.\) Tính giá trị của m – n.
- Cho hình vuông ABCD cạnh bằng a. Gọi E là trung điểm của CD. Tính độ dài dây cung chung CF của đường tròn đường kính BE và đường tròn đường kính CD.
- Điều kiện để biểu thức \(\sqrt {4 - 2x} \) xác định là:
- Trên mặt phẳng tọa độ Oxy, đồ thị hàm số \(y = - 2x + 4\) cắt trục hoành tại điểm
- Phương trình nào sau đây có hai nghiệm phân biệt và tích hai nghiệm là một số dương?
- Cho biết trong các hàm số sau, hàm số nào đồng biến khi \(x < 0\) ?
- Tất cả các giá trị của m để hai đường thẳng \(y = 2x + m + 2\) và \(y = \left( {{m^2} + 1} \right)x + 1\) song song với nhau là
- Nếu tăng bán kính của một hình tròn lên gấp 3 lần thì diện tích của hình tròn đó tăng lên gấp
- Một tam giác có độ dài ba cạnh lần lượt là 5 cm, 12 cm, 13 cm, bán kính đường tròn ngoại tiếp tam giác đó là:
- Hình trụ có bán kính đáy bằng 9cm, diện tích xung quanh bằng \(198\pi \,\,c{m^2}\) , chiều cao hình trụ đó bằng
- Tìm tất cả các giá trị của \(x\) để biểu thức \(\sqrt {x - 2} \) có nghĩa.
- Hàm số nào dưới đây là hàm số bậc nhất?
- Tìm \(m\) biết điểm \(A\left( {1;\; - 2} \right)\) thuộc đường thẳng có phương trình \(y = \left( {2m - 1} \right)x + 3 + m.\)
- Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {2m - 1} \right)x + m + 2\) đồng biến trên \(R.\)
- Hàm số nào dưới đây đồng biến khi \(x < 0\) và nghịch biến khi \(x > 0?\)
- Cho tam giác ABC vuông tại A. Khẳng định nào dưới đây đúng?
- Cho đường tròn tâm \(O,\) bán kính \(R = 5\;cm\) có dây cung \(AB = 6\;cm.\) Tính khoảng cách \(d\) từ \(O\) tới đường thẳng \(AB.\)