YOMEDIA
NONE
  • Câu hỏi:

    Tìm tất cả các giá trị thực của tham số m để đường thẳng y = 4m cắt đồ thị hàm số \(y = {x^4} - 8{x^2} + 3\) tại bốn điểm phân biệt ?

    • A. \( - {{13} \over 4} < m < {3 \over 4}\) 
    • B. \( - {{13} \over 4} \le m \le {3 \over 4}\) 
    • C. \(m \le {3 \over 4}\) 
    • D. \(m \ge  - {{13} \over 4}\) 

    Lời giải tham khảo:

    Đáp án đúng: A

    Phương trình hoành độ giao điểm

    \(\begin{array}{l}{x^4} - 8{x^2} + 3 = 4m\\ \Leftrightarrow {x^4} - 8{x^2} + 3 - 4m = 0\left( * \right)\end{array}\)

    Đặt \(t = {x^2}\) phương trình\(\) \(\left( * \right)\) \(\) \( \Leftrightarrow {t^2} - 8t + 3 - 4m = 0\) \( \Leftrightarrow {t^2} - 8t + 3 - 4m = 0\)

    Để đồ thị và đường thẳng cắt nhau tại 4 điểm phân biệt thì phương trình ẩn t phải có 2 nghiệm dương phân biệt

    \(\begin{array}{l}\left\{ \begin{array}{l}\Delta ' = 13 + 4m > 0\\{t_1}{t_2} = 3 - 4m > 0\\{t_1} + {t_2} = 8 > 0\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}m > \dfrac{{ - 13}}{4}\\m < \dfrac{3}{4}\end{array} \right.\\ \Rightarrow \dfrac{{ - 13}}{4} < m < \dfrac{3}{4}\end{array}\)

    ATNETWORK

Mã câu hỏi: 344697

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON