YOMEDIA
NONE
  • Câu hỏi:

    Tìm tất cả các giá trị của m để phương trình \(\log _2^2x + {\log _2}x + m = 0\) có nghiệm \(x \in \left( {0;1} \right)\).

    • A. \(m \le \frac{1}{4}\)
    • B. \(m \le 1\)
    • C. \(m \ge \frac{1}{4}\)
    • D. \(m \ge 1\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Đặt \(t = {\log _2}x\) . Với \(x \in \left( {0;1} \right) \Leftrightarrow t \in \left( { - \infty ;0} \right)\)

    Phương trình trở thành: \({t^2} + t + m = 0 \Leftrightarrow m =  - {t^2} - t\)  (*).

    Ta cần tìm m để phương trình có nghiệm \( \Leftrightarrow \left( * \right)\) phương trình có nghiệm.

    Xét hàm \(f\left( t \right) =  - {t^2} - t\) với \(t \in \left( { - \infty ;0} \right);f'\left( t \right) =  - 2t - 1;f'\left( t \right) = 0 \Leftrightarrow t =  - \frac{1}{2}\).

    Bảng biến thiên:

    Phương trình có nghiệm \( \Leftrightarrow m \le \frac{1}{4}\).

    ATNETWORK

Mã câu hỏi: 66791

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON