YOMEDIA
NONE
  • Câu hỏi:

    Tìm số thực dương a để hình phẳng giới hạn bởi hai đồ thị hàm số \(y=\frac{{{x}^{2}}+2ax+3{{a}^{2}}}{1+{{a}^{6}}}\) và \(y=\frac{{{a}^{2}}-ax}{1+{{a}^{6}}}\) có diện tích đạt giá trị lớn nhất.

    • A. 2
    • B. \(\frac{1}{\sqrt[3]{2}}\).
    • C. 1
    • D. \(\sqrt[3]{3}\).

    Lời giải tham khảo:

    Đáp án đúng: C

    Phương trình hoành độ giao điểm của 2 hàm số là: \(\frac{{{x}^{2}}+2ax+3{{a}^{2}}}{1+{{a}^{6}}}=\frac{{{a}^{2}}-ax}{1+{{a}^{6}}}\)

    \( \Leftrightarrow {x^2} + 3ax + 2{a^2} = 0 \Leftrightarrow \left[ \begin{array}{l} x = - a\\ x = - 2a \end{array} \right.\)

    Vậy diện tích hình phẳng giới hạn bởi 2 đồ thị hàm số là:

    \(S=\left| \int\limits_{-2a}^{-a}{\frac{{{x}^{2}}+3ax+2{{a}^{2}}}{1+{{a}^{6}}}dx} \right|=\left| \frac{1}{1+{{a}^{6}}}\left( \frac{{{x}^{3}}}{3}+\frac{3}{2}a{{x}^{2}}+2{{a}^{2}}x \right)\left| \begin{align} & -a \\ & -2a \\ \end{align} \right. \right|\)

    \(=\left| \frac{1}{1+{{a}^{6}}}\left( -\frac{{{a}^{3}}}{3}+\frac{3}{2}{{a}^{3}}-2{{a}^{3}}+\frac{8}{3}{{a}^{3}}-6{{a}^{3}}+4{{a}^{3}} \right) \right|\)

    =\(\frac{\left| {{a}^{3}} \right|}{6\left( 1+{{a}^{6}} \right)}\,\,\,\overset{Cauchy}{\mathop{\le }}\,\,\,\,\frac{\left| {{a}^{3}} \right|}{12\left| {{a}^{3}} \right|}=\frac{1}{12}\) .

    Dấu \(''=''\Leftrightarrow {{a}^{6}}=1\Leftrightarrow a=1\) ,vì a>0.

    Vậy diện tích S đạt giá trị lớn nhất là \(\frac{1}{12}\) , khi a=1 .

    ATNETWORK

Mã câu hỏi: 276358

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON