YOMEDIA
NONE
  • Câu hỏi:

    Gọi S là tập hợp tất cả các giá trị của tham số \(m\in \mathbb{Z}\) và bất phương trình \({{\log }_{m-5}}\left( {{x}^{2}}-6x+12 \right)>{{\log }_{\sqrt{m-5}}}\sqrt{x+2}\) có tập nghiệm chứa đúng hai giá trị nguyên. Tìm tổng các phần tử của tập S.

    • A. 2
    • B. 0
    • C. 3
    • D. 1

    Lời giải tham khảo:

    Đáp án đúng: B

    Điều kiện xác định của phương trình là \(\left\{ \begin{array}{l} {x^2} - 6x + 12 > 0\\ x + 2 > 0\\ m - 5 > 0\\ m - 5 \ne 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x > - 2\\ m > 5\\ m \ne 6 \end{array} \right.\)

    Ta có \({{\log }_{m-5}}\left( {{x}^{2}}-6x+12 \right)>{{\log }_{\sqrt{m-5}}}\sqrt{x+2}\)\(\Leftrightarrow {{\log }_{m-5}}\left( {{x}^{2}}-6x+12 \right)>{{\log }_{m-5}}\left( x+2 \right)\) (1)

    Khi 5<m<6 thì \(\left( 1 \right)\Leftrightarrow {{x}^{2}}-6x+12<x+2\) \(\Leftrightarrow {{x}^{2}}-7x+10<0\) \(\Leftrightarrow 2<x<5\)

    Do đó, tập nghiệm của \(\left( 1 \right)\) là \(T=\left( 2;5 \right)\) có chứa đúng 2 giá trị nguyên.

    Nhưng tập tham số m không chứa giá trị nguyên.

    Khi m>6 thì \(\left( 1 \right)\Leftrightarrow {{x}^{2}}-6x+12>x+2\) \(\Leftrightarrow {{x}^{2}}-7x+10>0\) \(\Leftrightarrow \left[ \begin{align} & x<2 \\ & x>5 \\ \end{align} \right.\)

    Do đó, tập nghiệm của \(\left( 1 \right)\) là \(T=\left( -2;2 \right)\cup \left( 5;+\infty\right)\) có chứa nhiều 2 giá trị nguyên.

    Kết luận \(S=\varnothing \). Tổng các phần tử của tập S bằng 0.

    ATNETWORK

Mã câu hỏi: 276354

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON