YOMEDIA
NONE
  • Câu hỏi:

    Tìm \(m\) để hàm số \(y = \frac{{m{x^2} + 6x - 2}}{{x + 2}}\) nghịch biến trên \(\left[ {1; + \infty } \right).\)

    • A. \(m \le  - \frac{{14}}{5}\).
    • B. \(m > 1.\)
    • C. \(m >  - 3\).
    • D. \(m > 3.\).

    Lời giải tham khảo:

    Đáp án đúng: A

    + TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\).

    + Ta có: \(y' = \frac{{m{x^2} + 4mx + 14}}{{{{\left( {x + 2} \right)}^2}}}\).

    Hàm số nghịch biến trên \([1; + \infty )\)\( \Leftrightarrow y' \le 0{\rm{ }}\forall x \in \left[ {1; + \infty } \right)\), đẳng thức chỉ xảy ra tại một số điểm hữu hạn.

    \( \Leftrightarrow m{x^2} + 4mx + 14 \le 0{\rm{ }}\forall x \in \left[ {1; + \infty } \right)\)\( \Leftrightarrow m\left( {{x^2} + 4x} \right) \le  - 14{\rm{ }}\forall x \in \left[ {1; + \infty } \right) \Leftrightarrow g\left( x \right) = \frac{{ - 14}}{{\left( {{x^2} + 4x} \right)}} \ge m,\forall x \in \left[ {1; + \infty } \right) \Leftrightarrow \mathop {\min g\left( x \right)}\limits_{\left[ {1; + \infty } \right)}  \ge m\).

    Xét hàm số \(g\left( x \right) = \frac{{ - 14}}{{\left( {{x^2} + 4x} \right)}}\) trên \([1; + \infty )\) có : \(g'\left( x \right) = \frac{{14\left( {2x + 4} \right)}}{{{{\left( {{x^2} + 4x} \right)}^2}}} > 0,\forall x \in \left[ {1; + \infty } \right)\).

    \( \Rightarrow \) hàm số luôn đồng biến \( \Rightarrow \)\(\mathop {\min g\left( x \right)}\limits_{\left[ {1; + \infty } \right)}  = g\left( 1 \right) =  - \frac{{14}}{5} \ge m \Leftrightarrow m \le  - \frac{{14}}{5}\).

    ATNETWORK

Mã câu hỏi: 356210

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON